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‘Each site has its own survival probability, but
information is borrowed across sites to tell us about
survival in each site’: random effects models as means of
borrowing strength in survival studies of wild vertebrates
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Survival probability is a key parameter whose variation
may have a substantial influence on the population asymp-
totic and realized growth rate (Caswell, 2001; Nichols &
Hines, 2002). Estimation of survival in wild vertebrate
populations has long been a challenge and has stimulated
collaborations between biologists and statisticians (Wil-
liams, Nichols & Conroy, 2002), mostly because of diffi-
culties in correcting observed proportions of survivors
when not all the individuals alive and present in the study
area are detected by investigators (i.e. detection probability
is <1; Williams et al., 2002). Halstead et al. (2011) have
estimated daily mortality risk in the giant gartersnake
(Thamnophis gigas) and addressed spatial variation in sur-
vival. In Halstead et al., the difficulty was not detection
probability: individuals were equipped with radio transmit-
ters and detection probability approaches 1 in many telem-
etry studies (Williams et al., 2002). Halstead et al. used
a standard approach in human demography based on
hazard models (Hosmer, Lemeshow & May, 2011), where
the hazard function accounts for the instantaneous rate of
occurrence of the death event. They used a Bayesian
approach to estimate a mixed version of their model; that
is, a model with fixed (e.g. habitat type) and random
effects (year, site).

Frailty models
The model is a ‘shared frailty’ model. Frailty models have
been developed to account for heterogeneity in populations:
the latter consist of a mixture of individuals with different
hazards. Biologists have long identified factors that co-vary
with survival in wild populations (age, year, habitat quality,
etc.). However, human demographers also pointed out that

hazard estimates may be biased if some relevant sources of
heterogeneity are ignored (Vaupel, Manton & Stallard,
1979; Aalen, Borgan & Gjessing, 2008): if investigators are
unaware of the relevance of some sources of variation in
mortality risk, if defining the variables to measure is con-
ceptually challenging (e.g. ‘individual quality’; Wilson &
Nussey, 2010) or if measuring them is technically difficult.
Frailty models are individual random effects models that
assume a distribution of individual hazards; this distribu-
tion accounts for the heterogeneity among individuals that
remains once measured covariates have been taken into
account, and its characteristics have to be assessed. Indeed,
an individual hazard cannot be estimated using data from
an individual because the death event is unique in the indi-
vidual life history, but we can assess the distribution of
individual hazards in the population. Using frailty models
requires conceptual decisions whose relevance for a particu-
lar dataset cannot always be assessed because of the current
limitations in statistical theory (e.g. which distribution to
choose for individual hazards; Yashin et al., 2001). More-
over, how to assess the relevance of models with different
parameterizations for random effects is still currently
debated (Gelman, Meng & Stern, 1996; Gelfand & Ghosh,
1998; Spiegelhalter et al., 2002; Cai & Dunson, 2006;
Plummer, 2008), and investigators have to choose from
several methods when there is no dominating one. With
some assumptions and constraints in model development,
frailty models can be estimated (Yashin et al., 2001).
Random effects models (including frailty models) have been
used in a very large number of papers focusing on (longitu-
dinal) data from humans (Banerjee, Carlin & Gelfand, 2003;
Banerjee, Wall & Carlin, 2003; Gelman & Hill, 2007;
Lawson, 2009).
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Borrowing strength
Halstead et al. (2011) explained why they treated the vari-
able ‘Site’ as a random effect as follows: ‘we were not inter-
ested in site differences per se, but wanted a large-scale
assessment and the average survival function of the giant
gartersnake’. This is indeed a reason why investigators con-
sider a variable as a random effect rather than a fixed one:
the study sites are considered as a sample from a larger
population of sites, and the goal is to draw inferences about
the population-averaged response and the variance among
sites. Treating ‘Site’ as a random effect had crucial conse-
quences: the site-specific estimates of survival were more
precise than if ‘Site’ had been treated as a fixed effect (Hal-
stead et al., 2011). When ‘Site’ is treated as a fixed effect,
sites are considered as independent and data from each site
are used to estimate k site-specific mean hazards. Obvi-
ously, if the number of marked snakes per site is small, the
estimated site-specific hazard rate is likely to be imprecise
(large credible interval). Treating ‘Site’ as a random effect is
using data from all the snakes from all the sites to draw
inference about individual sites, which is sometimes
described as ‘borrowing strength’ (Sauer & Link, 2002;
Clark et al., 2005).

Shared frailty models
The distinguishing feature of the model used by Halstead
et al. is that it is a shared frailty model: the individuals in
each site share the same unobserved frailty. Shared frailty
models are used when the number of subjects in each group
(cluster) is small, or when there are good reasons to
hypothesize that groups are homogeneous in terms of
hazard (e.g. when data from several studies are used, a
study can be treated as a cluster), or to take non-
independence of observations from subjects in a cluster
into account. Halstead et al. chose not to use a model with
individual frailty because the age of the snakes was
unknown, contrary to studies of birds marked as chicks
for example (Marzolin, Charmantier & Gimenez, 2011).
Frailty is assumed to reflect an individual deviation in the
mortality risk from the baseline risk: it is important to use
data from individuals that survived the same number of
units of time before entering the study to assess this risk.
The genuine distribution of individual frailties in the popu-
lation cannot be accessed if the individuals with the largest
mortality risks die before being captured, marked and
released. Halstead et al. were concerned about such hetero-
geneity among snakes created by heterogeneity in age at
capture. For this reason, they focused on the variation in
hazard among sites and assumed homogeneity in frailty
within sites. This variation would underestimate the disper-
sion of genuine hazards among sites if there was still het-
erogeneity in frailty within sites and if the age at marking
and the proportion of individuals missed before being
marked differed according to site. Addressing these
hypotheses is virtually impossible when the number of indi-
viduals per site is small.

Random effects models in
demographic studies of
wild vertebrates
Individual random effects models have been used to esti-
mate survival in animal demography studies (e.g. Cam
et al., 2002; Clark et al., 2005; Royle, 2008; Gimenez &
Choquet, 2010; Hawkes, 2010; Aubry et al., 2011). Mod-
elling approaches that are generally developed in other
areas of research are increasingly being used and modified
to address hypotheses in wildlife ecology. There are several
reasons for this. First, the criteria to assess the quality of
wildlife ecology research are changing, thanks to coopera-
tion with modellers. For example, the issue of non-
independence of responses in adjacent spatial areas has
long been considered in human health studies (Waller &
Gotaway, 2004), and is now handled via spatially struc-
tured random effects in ecology (e.g. Ogle et al., 2006).
Second, random effects can be clearly of interest in evolu-
tionary demography: a random effect structured as a func-
tion of the degree of relatedness of individuals in a
pedigree has been used to estimate the additive genetic
variance in survival and heritability (Papaïx et al., 2010;
Buoro, Gimenez & Prévot, 2012). Shared and correlated
frailty models have also been used in human demography
to address ‘resemblance’ in mortality risk in twins or fami-
lies, and the possible genetic determinism of this risk
(Yashin et al., 2001). Third, as emphasized by Halstead
et al., data from several studies, populations or species can
be combined in a joint analysis partitioning the variance in
demographic parameters; such models can be used to
address the co-variation in time series among species or
populations (Lahoz-Montfort et al., 2010; Papadatou
et al., 2011). Last, the development of free software
designed to estimate mixed models has been a deciding
factor (e.g. BUGS; Lunn et al., 2009; R Development Core
Team, 2011). These pieces of software are very flexible and
it is possible to specify user-defined structures for the
variance-covariance matrix of random effects according to
the levels of variation in the response relevant to the bio-
logical questions of interest. However, flexibility requires
investigators to make many decisions: how to parameterize
models, to estimate their coefficients, to assess model fit
and compare models. This highlights the need for
advanced courses in statistical modelling in university
education in wildlife science.
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