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Appendix A1 

Methods. Estimation and model selection (Cam et al. 2013). 

 

Bayesian estimation  

Prior distributions. Fixed effects (i.e. slopes for age, age of first breeding ‘afr’, interactions between 

age and ‘afr’, previous breeding state) were assigned Normal prior distributions with mean 0 and 

precision 0.001, where “precision” refers to the inverse of the variance. Small precisions (e.g. 

0.001 here) correspond to large variances. This means that investigators don’t want to favor 

specific values or a small interval: the range of possible values considered a priori is large (‘vague’ 

prior distribution). Year was treated as a random effect: the 22 levels of this variable represented 

in our dataset were assumed to come from a larger population of year effects. Instead of drawing 

inferences about the specific effect of each year (e.g. survival decreased in that year, increased in 

that other year), we were interested in the variance of the year effects (a summary of the temporal 

variability). We used a Normal random effect with mean 0 and precision τ. A common practice is 

to use a Gamma prior distribution for precision parameters of Normal distributions (because this 

distribution and the Normal distribution with known mean are conjugate). Gamma distributions 

are defined by two parameters: scale, and shape, and may range from 0 to infinity. The scale 

determines the practical range (the smaller the scale, the smaller the range, which means that a 

larger a priori probability is placed on small values of the precision of the individual random 



effect). The shape determines the profile of the distribution (e.g., the kurtosis is inversely 

proportional to the shape). Here we used a Γ(0.001, 0.001) for τ, a standard choice.   

Individual random effects were considered either correlated or independent. For 

correlated random effects, a trivariate Normal distribution with mean 0 was assumed for the d×d 

(d = 3) variance-covariance matrix Σ   
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where 2
φσ ,	   2

βσ ,	  and 2
γσ are the variances of the individual random effects on survival, breeding 

and success probability, respectively. ρ stands for the correlation between two random effects 

specified as subscripts. For multivariate Normal distributions, the classical prior distribution 

available in BUGS is the Wishart distribution placed on the inverse of the variance-covariance 

matrix Σ  (i.e. the precision matrix Σ -1 = Ω). The Wishart distribution is a generalization of the 

Gamma distribution; it is a conjugate prior distribution for multivariate Normal distributions with 

known means. It is defined by its number of degrees of freedom (ν ) and scale matrix ( )0Ω . The 

expected value of the variance-covariance matrix for the individual random effects (E[�]) is 

related to the number of degrees of freedom and the scale matrix of the Wishart distribution in 

the following way: if ),(Wishart~ 1
0d
−ΩΩ ν , then 01

1][ Ω
−−

=Σ
d

E
ν

, where d is the 

number of individual random effects. 0Ω can be interpreted as determining the ’location’ of the 

prior and ν  as determining the spread of the distribution if ν  is not too small (Rossi et al. 2005). 

One of the difficulties with the Wishart prior is the choice of parameter values. We used =ν d + 

1 = 4 degrees of freedom, which implies a uniform distribution U(-1,1) on the correlation 

parameters (Gelman and Hill 2007). This reflects the lack of a priori knowledge concerning the 



degree of association between individual random effects. In BUGS, we used the default values of 

1 (Congdon 2006) for the diagonal elements of the scale matrix (the variance of individual 

random effects on the logit scale), and 0 for off-diagonal elements. For models with independent 

individual random effects, we used the same approach as for year effects: Normal random effects 

with mean 0 and precision τ’, and a Gamma prior distribution Γ(0.001, 0.001) for τ’.  

 

Convergence 

As with other numerical estimation algorithms, inferences about parameter estimates should not 

be made before convergence is reached. To assess convergence in Markov chain Monte Carlo 

approaches, several chains can be used to check whether the magnitude of variability between 

chains isn’t that different from the variability within chains. Here we ran three chains with 

different sets of initial values (e.g. mean of Normal random variables). To avoid the influence of 

initial values in our inferences, we discarded the first 5000 samples out of a total of 50000 

samples. To reduce autocorrelation in the chains, we retained only 1 sample out of 3 (thin = 3). 

Models with independent random effects were more difficult to estimate (the autocorrelation in 

the chains was sometimes large). The first 10 000 samples were discarded, and 1 sample out of 6 

was retained for inferences. Convergence was checked using the Brooks-Gelman-Rubin 

diagnostic 
∧

R  for each model (Gelman and Rubin 1992). Values close to 1 indicate convergence. 

We used the R package CODA (Plummer et al. 2006) to analyze results reported in the 

Supplementary Material Appendix A6 

. 

Sensitivity analyses 

Sensitivity analyses were performed using the lowest-DIC models. For models with correlated 

random effects, we focused on the prior distribution of the inverse of the variance-covariance 

matrix for individual random effects �. Following Hoff (2010), we used informative priors for 



larger levels of variability of the logit-scale vital rates. Recall that if ),(Wishart~ 1
0d
−ΩΩ ν , 

then 01
1][ Ω
−−

=Σ
d

E
ν

. We set the number of degrees of freedom of the Wishart distribution 

equal to 5 so that E[Σ ] = 0Ω , which makes it straightforward to choose values for 0Ω  

corresponding to expected values of the variance–covariance matrix for random effects. Larger 

numbers of degrees of freedom allow variances to be estimated more freely but constrain 

correlations among individual random effects (Gelman and Hill 2007). We used prior values for 

2σ  (the variance of individual random effects on the logit scale) of 0.05, 0.5 and 5 (convergence 

was questionable with the smallest value). These values were used to construct the diagonal scale 

matrix 0Ω  specified in BUGS. For uncorrelated random effects, sensitivity to prior Gamma 

distributions was assessed using 1 for the shape and scale parameters, or 10 for both parameters 

(i.e. increased prior precision for the Normal individual random effects).  

 

Model selection via inclusion variables 

According to several authors, there are difficulties with inferences about random effects using 

information criteria in the framework of generalized linear models in both the Frequentist and 

the Bayesian paradigms (Spiegelhalter et al. 2002, Harry 2008, Plummer 2008, O'Hara and 

Sillanpää 2009). Consequently, we also used inclusion variables (O’Hara and Sillanpää 2009) at 

different steps of the model selection process to assess whether random effects were needed to 

describe the process that gave rise to our data. An inclusion variable can be thought of as a 

‘switch’ (indicator variable) taking two values (0 and 1) with a specified probability (e.g. 0.5); see 

Royle (2008) for an example and BUGS codes. Here the indicator variable is associated with an 

individual random effect. When the variable is equal to 1, the random effect is included in the 

model and its variance estimated. If the model is estimated using a Bayesian approach, the 

posterior probability of the inclusion variable is also estimated. If we set the prior probability of 



inclusion of a random effect to 0.5, this means that investigators do not have any a priori idea 

about the relevance of the random effect for their data, and that they consider the hypotheses 

corresponding to the model with the random effect and the one without it as equally likely for 

the dataset. If the posterior probability of the indicator variable including the individual random 

effect is larger (say, 0.8), this means that the data have brought information useful to update 

knowledge about the relevance of the model with the random effect: there is evidence that the 

model including it is more consistent with the data than the model without it.  

Our objective was to assign an inclusion variable to each individual random effect. We 

used two sets of prior probabilities of including individual random effects: 0.5, and 0.8. If the 

inclusion of a random effect is treated as a Bernoulli trial with probability 0.5, the prior 

probability of the three inclusion variables being simultaneously equal to 1.0 is 0.125. Prior 

probabilities of 0.8 for each inclusion variable resulted in prior probabilities of including all the 

random effects simultaneously in the model close to 0.5 (precisely, 0.512). When the individual 

random effects are independent and have independent prior Normal distributions, building a 

simplified version of a random effect model is straightforward (Royle 2008): an inclusion variable 

is used to include or remove variance terms from the model.  

However, when individual random effects are not independent and are assumed to have a 

multivariate Normal distribution, investigators have to handle covariances among random effects: 

a covariance must be included in the model whenever two inclusion variables for two individual 

random effects take values of 1. This isn’t possible if a Wishart prior is specified in BUGS for the 

precision matrix of a multivariate Normal distribution: the size of the scale matrix of the Wishart 

distribution and its number of degrees of freedom would change at each iteration according to 

the outcome of 3 Bernoulli trials. Consequently, we used the Cholesky decomposition of the 

variance-covariance matrix of correlated random effects introduced by Chen and Dunson (2003; 

see Authier et al. 2012 for BUGS codes). Chen and Dunson (2003) re-parameterized the 

variance-covariance matrix of a multivariate Normal distribution for random effects in a linear 



mixed model so that the use of the Wishart distribution can be avoided. They suggested 

factorizing the variance-covariance matrix Σ  as follows: ΛΛΓΓΣ '= . Instead of considering 

directly a multivariate Normal distribution for individual random effects, the linear model is 

expressed as functions of independent standard Normal distributions (Chen and Dunson 2003).  

In the framework of a linear mixed model, for n subjects contributing ni observations, let 

yi be the response variable of subject i at occasion j, xij a p×1 vector of predictors, and zij a q×1 

vector of predictors (random effects). The linear mixed model for observations yi  from subject i 

is 

 

where T
iinii yyy ),...,( 1= , T

i
T
in

T
ii XXX ),...,( 1= ,	   T

i
T
in

T
ii ZZZ ),...,( 1= ,	  α  is a p×1 vector of 

population parameters, iβ is a q×1 vector of individual random effects, with iβ ~N(0,�), and 

the residuals iε are N(0, 2σ I). Let L be the lower Cholesky decomposition of �. Given L, the 

linear mixed model is expressed as follows 

 

where T
iqii bbb ),...,( 1= is a vector of independent standard Normal latent variables. Then we 

let L=Λ�, where  Λ=diag( �1,…, �q) with �k ≥0 for k =1,…,q, and � is a q×q triangular lower 

matrix (here, q =3), 

 

 

The linear mixed model can then be expressed as follows: 

 

That is, a model with several individual random effects following a multivariable Normal 

distribution can be estimated by estimating the elements of the matrices Λ and � and 
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constructing �. When relevant (i.e. depending on whether a given individual random effect is 

relevant to individual i , as specified in iZ  ), each individual deviate (say 321 ,, iii aaa ) 

corresponding to random effects is estimated by multiplying a random value drawn from a 

standard Normal distribution ( ib ) by Λ�. For example, for q = 3 random effects, if all of them 

are relevant for individual i , the individual value corresponding to the first random effect 1ia will 

be equal to 11 ibλ , with 1ib drawn from a standard Normal distribution. The value corresponding 

to the second individual random effect 2ia will be equal to )( 21212 ii bb +γλ , with 2ib drawn from 

a standard Normal distribution. For the value corresponding to the third individual random 

effect: 3ia = )( 32321313 iii bbb ++ γγλ . This allows investigators to use several inclusion variables 

simultaneously. For example, the first indicator variable determined whether the first individual 

random effect was included in the model. If not, the same indicator variable excluded  121 ibγ from 

the formula used to estimate the value corresponding to the second random effect, as well as 

131 ibγ from the formula used to estimate the individual value corresponding to the third random 

effect. That is, we didn’t address covariances separately from variances. As in Authier et al. (2012) 

we used Half- Normal prior distribution for the elements of Λ with mean 0 and variance equal to 

0.25, and Normal distributions with mean 0 and variances 2.25 for the elements of �. Such priors 

place a large probability mass on zero for variances. Most of the mass is between 0 and 5, and 

values exceeding 5 are still possible by far less likely: such a range is reasonable for variances on 

the logit scale. BUGS codes can be found in Authier et al. (2012), as well as illustrations of the 

characteristics of the priors placed on the Cholesky decomposition of the variance-covariance 

matrix Σ . Here we used a similar approach for a generalized linear mixed model with a logit link 

function (Cai and Dunson 2006). 

The use of inclusion variables raised difficulties in some cases: the estimates of mean 

posterior probabilities of inclusion variables were equal to 1.00 and mixing in the Markov chains 



stopped before discarding the first 5000 samples to avoid the influence of initial values. In these 

cases we also used prior probabilities of 0.2, which leads to a prior probability of simultaneous 

inclusion of all the individual random effects of 0.008. In the approach developed by Chen and 

Dunson (2003), when the variances of two random effects are included in a model, the 

correlation between them is also automatically included. In other words, the above-mentioned 

prior probabilities of inclusion of individual random effects corresponded to set of several 

parameters simultaneously (variances and correlations). In addition, theoretically, it should be 

possible to assess covariances between individual random effects using the approach developed 

by Chen and Dunson (2003), Cai and Dunson (2006), or Kinney and Dunson (2007). Indeed, in 

problems relying on complex variance-covariance matrices, some individual random effects may 

be correlated and others not. Investigators may even have specific a priori biological hypotheses 

about components of variance. As emphasized by O'Hara and Sillanpää (2009) some approaches 

require substantial tuning. In our case, this involved a substantial increase in computing time 

using OpenBUGS. Models were first run using the Cholesky decomposition of the variance-

covariance matrix of individual random effects to obtain starting values (the decomposition itself 

slowed the process down with our dataset), and then re-run using inclusion variables. Future 

work with this data set may address more detailed hypotheses about the structure of the variance-

covariance matrix of random effects. For a given Markov chain, we used identical initial values 

for the inclusion variables ; 0, 0, 0 for chains 1 and 2, and 1, 1, 1 for chain 3.  
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Appendix A2 

Inclusion variables (Chen and Dunson 2003). 

Model Prior 

probability of 

inclusion of Σ 

Prior probability 

for each 

inclusion 

variable 

Mean Median Quantiles 

0.025          0.975 

Complete data set 

 ϕ   0.79 1.0 0.0 1.0 

 β 0.50 0.80 0.99 1.0 1.0 1.0 

 γ   0.98 1.0 1.0 1.0 

1 ϕ   0.43 1.0 0.0 1.0 

 β 0.125 0.50 0.98 1.0 1.0 1.0 

 γ   0.93 1.0 0.0 1.0 

 ϕ   1 1.0 1.0 1.0 

 β 0.50 0.80 1 1.0 1.0 1.0 

 γ   1 1.0 1.0 1.0 

9 ϕ   1 1.0 0.0 1.0 

 β 0.125 0.50 1 1.0 1.0 1.0 

 γ   0.99 1.0 1.0 1.0 

Males 

 ϕ   0.81 1.0 0.0 1.0 

 β 0.50 0.80 0.99 1.0 1.0 1.0 

1 γ   0.76 1.0 0.0 1.0 

 ϕ   0.57 1.0 0.0 1.0 



 β 0.125 ¥ 0.50 0.96 1.0 0.0 1.0 

 γ   0.46 1.0 0.0 1.0 

Females 

 ϕ   0.84 1.0 0.0 1.0 

 β 0.5 0.80 0.99 1.0 1.0 1.0 

 γ   0.97 1.0 0.0 1.0 

1 ϕ   0.52 1.0 0.0 1.0 

 β 0.125 0.50 0.96 1.0 0.0 1.0 

 γ   0.41 1.0 0.0 1.0 

 

ϕ = survival probability. β= breeding probability. γ = probability of raising at least one chick to 

independence given that the individual attempted to breed. ¥ Convergence was questionable. 

Chen, Z. and Dunson, D. B. 2003. Random effects selection in linear mixed models. – 

Biometrics 59: 762–769. 



Appendix A3 

Sensitivity analyses (complete data set). 

 

Figure A1a. Posterior distributions of individual random effects according to the number of 

degrees of freedom (ν) and scale matrix (Ω0) of the Wishart distribution. Dot: median. Extremes: 

2.25% and 97.5% quantiles. SD = standard deviation. ϕ: survival probability. β: breeding 
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probability. γ: success probability. For small a priori variances in the scale matrix (Ω 0 = diag 

(0.05, 0.05, 0.05)) convergence was questionable. 

 

Figure A1b. Posterior distributions of individual random effects according to the number of 

degrees of freedom (ν) and scale matrix (Ω0) of the Wishart distribution. Dot: median. Extremes: 

2.25% and 97.5% quantiles. Cov = covariance. ϕ: survival probability. β: breeding probability. γ: 

success probability. For small a priori variances in the scale matrix (Ω 0 = diag (0.05, 0.05, 0.05)) 

convergence was questionable. 
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When increasing the number of degrees of freedom (i.e. constraining correlations but 

estimating variances more freely), the posterior standard deviation of the individual random 

effect for survival decreased. The difference in the median was not so marked. The variance of 

this individual random effect was influenced by the scale matrix of the Wishart distribution. 

Concerning the individual random effects on breeding and success probability, results were not 

sensitive to the number of degrees of freedom or the scale matrix of the Wishart distribution.  



Appendix A4a 

Relationship between age and survival probability (complete data set): mean individual. Dashed 

lines: quartiles. Dotted lines: quantiles (0.05 and 0.95).  
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Age of first breeding = 4 years old 
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Age of first breeding = 5 years old 
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Age of first breeding = 6 years old 
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Age of first breeding ≥ 7 years old 
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Appendix A4b 

Relationship between age and breeding probability (complete dataset): mean individual. Dashed 

lines: quartiles. Dotted lines: quantiles (0.05 and 0.95).  
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Age of first breeding = 4 years old 
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Age of first breeding = 5 years old 
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Age of first breeding = 6 years old 
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Age of first breeding ≥ 7 years old 
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Appendix A4c 

Relationship between age and success probability (complete dataset): mean individual. Dashed 

lines: quartiles. Dotted lines: quantiles (0.05 and 0.95).  
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Age of first breeding = 4 years old 
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Age of first breeding = 6 years old 
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Age of first breeding ≥ 7 years old 
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Appendix A5a 
Posterior densities (model 9, main text Table 1, complete data set) 
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Appendix A5b 

Autocorrelation (model 9, main text Table 1, complete data set) 
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Appendix A6 

Excluding location-years with massive predation on eggs 

We selected data from location-years (‘cliffs’; Naves et al. 2006) without sign of substantial 

predation on eggs by corvids. Once started, such predation events occurred in consecutive years 

and, when massive, led to complete desertion of two colonies over the period considered here 

(Cam et al. 2004, Bled et al. 2011). Substantial predation on eggs in a location was identified by 

synchronous early failure at the egg stage in May in clusters of nests in colonies, and numerous 

egg shells found at the top of cliffs. When 20% or more of the active nests of a location were 

concerned, data from that location–year were excluded. This does not exclude all predation cases, 

but excludes situations of typical systematic predation by corvids. In addition, observations did 

not correspond to consecutive years in some individual histories because high predation at the 

egg stage in the location led to exclusion of some location–years. Data were assumed to be 

missing at random (Lu and Copas 2004). Imputation to deal with missing data is beyond the 

scope of this paper. Data from 1873 individuals were used (5277 alive/dead events, 3809 

breeding/nonbreeding events, and 3379 success/failure events). 

 

Results 

Based on DIC, there was no evidence of correlations among random effects (Supplementary 

Material Appendix A6 Table A1). Here the quadratic effect of age on survival probability was 

included in the lowest-DIC model (model 8). Apart from that, results were consistent with those 

obtained using the complete data set (Cam et al. 2013). We used inclusion variables with model 8 

by setting the terms standing for the correlations among individual random effects in the 

Cholesky decomposition equal to 0 (i.e. independent random effects). With prior probabilities of 

inclusion variables of 0.2, 0.8 and 0.5, estimates of mean posterior probabilities were 

systematically 1.0 and mixing had stopped before the end of the burn-in period (results not 



presented). Concerning inclusion variables used with the most general model (model 1), results 

were sensitive to prior probability of inclusion of individual random effects, mostly for success 

probability (Supplementary Material Appendix A6 Table A2). The smallest posterior mean 

probabilities of inclusion variables concerned the individual random effect on success probability 

when strongly penalizing the random-effects model a priori. The estimates of posterior 

probabilities of the corresponding inclusion variables (the mean) were very close to 1.00 and 

mixing occurred at the beginning of the analysis (when the Markov chains may be influenced by 

initial values), but stopped before 5000 samples were drawn from the posterior distribution 

(burn-in period). Results concerning inclusion of the individual random effect on success 

probability with this data subset were definitely different from those obtained using data collected 

during both heavy predation and outside predation episodes (Cam et al. 2013). The data may be 

less informative concerning individual random effects for success probability in favorable 

environment.  

We also addressed post hoc hypotheses about the quadratic effect of age on each fitness 

component. Model without age2 on survival: DIC = 11751.7 (effective number of parameters = 

1645.1); model without age2 on breeding probability: DIC = 11773.1 (effective number of 

parameters = 1640.8); model without age2 on success probability: DIC = 11752.1 (effective 

number of parameters = 1646.0). These results provided evidence that the quadratic effect of age 

on survival wasn’t necessary to account for the process that gave rise to our data, neither was it 

for success probability (which wasn’t the case with the complete data set). Conversely, the model 

incorporating age2 on breeding probability received larger support than the model without it. 

Estimates made under the model with a single quadratic relationship with age (breeding 

probability) are reported in Supplementary Material Appendix A6 Table A3. The negative 

relationship between age and survival was more marked using this subset of the data compared to 

the complete data set (Cam et al. 2013). The autocorrelation in the Markov chains was 

substantially smaller than with the complete data set (Supplementary Material Appendix A5) for 



the variance of the individual random effect on survival and the slope of the relationship between 

age and survival (results not presented here). The variances of the individual random effects on 

survival and breeding probability were sensitive to the parameters of the prior Gamma 

distribution on the precision τ’: the larger the precision, the smaller the posterior variance 

(Supplementary Material Appendix A6 Table A4). This relationship was not observed for the 

variance of the individual random effect on success probability. 

 

Discussion 

As expected (Cam et al. 2013), inclusion variables indicated that heterogeneity in individual 

success probability received smaller support when data from massive predation periods were 

excluded (see also Cam et al. 2004). This suggests that part of the heterogeneity in success 

probability among individuals in the complete data set results from contrasted environmental 

conditions experienced by individuals. Similarly, one of the main differences between the two 

analyses (these analyses are not independent because this one was conducted using a subset of 

the complete dataset) is that the correlations between individual random effects were not selected 

here when excluding data collected during predation events. A possible interpretation is that 

these correlations partly reflect behavioral responses to environmental conditions, namely a 

relationship between failed breeding attempts, dispersal, nonbreeding (Danchin et al. 2002), and 

divorce (Naves et al. 2006). Danchin et al. (1998) have provided evidence of a relationship 

between dispersal within the study area and breeding success. In addition, our estimates of 

survival probability are restricted to the study area; emigration out of the study area cannot be 

assessed yet because of the large distribution area of the species and insufficient effort to collect 

data in a large part of this area. However, anecdotal observations of breeding individuals in the 

UK (and Ireland) show that emigration exists. Part of the individuals deserting heavily predated 

locations may enter a ‘failure vicious cycle’ that would translate into a positive relationship 

between breeding performance and local survival, and between breeding and success probability 



(unsuccessful individuals disperse and fail again after moving to another location, or don’t breed; 

if they disperse out of the study area, this translates into apparent death in our data).  

To assess whether local conditions are responsible for heterogeneity in success probability 

among individuals, analyses should be conducted at a different spatial scale (Bled et al. 2011). 

Local conditions in the study area are unlikely to create heterogeneity in overwinter survival 

among individuals (this species migrates and we have no reason to think that feeding areas are 

specific to colonies or ‘cliffs’ in summer). However, these conditions may create some 

heterogeneity in breeding probability among individuals if some of the individuals have to face 

several predation episodes consecutively in different locations. Investigating this question will 

require joint consideration of habitat features, dispersal within the study area, and fitness 

components in this fragmented population. In addition, it is interesting to note that posterior 

probabilities of inclusion of the individual random effect on survival were larger when focusing 

on favorable environmental conditions (at least for predation on eggs) compared to the complete 

data set (main text, Table 2; Cam et al. 2013). The estimated standard deviation of the individual 

random effect on survival probability (Supplementary material Appendix A6 Table A3) was also 

larger than with the complete data set (main text, Table 4; Cam et al. 2013). A formal comparison 

of variances would require building a model with heterogeneous variance. As explained above, 

our survival estimates are confounded with fidelity to the study area. Under the hypothesis of 

differences in individual potential for survival, massive predation on eggs and subsequent 

dispersal out of the study area will concern any individual regardless of its baseline mortality risk. 

External causes of failure are expected to homogenize local survival probabilities in the 

concerned location-year. In contrast, the variance among individuals is expected to be large in 

situations where external causes of failure do not lead to permanent emigration.  
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Table A1. Model selection for survival, breeding, and success probability: inferences about age, age of first breeding, year, previous breeding activity 

and success and random individual effects. Data from locations–years without heavy predation at the egg stage by corvids. 

Model Life 
history 

trait 

Age Age2 Afr Afr*Age Pbs Year 

(random 
effect) 

Individual 
random 
effects 

Correlation 
between 

individual 
random 
effects 

Deviance 
information 

criterion 

Effective 
number of 
parameters 

Deviance 
information 

criterion 
weight 

 ϕ Yes Yes Yes Yes Yes Yes Yes Yes    

1∗ β Yes  Yes Yes Yes Yes Yes Yes Yes 11813.5 1189.8 0.00 

 γ Yes Yes Yes Yes Yes Yes Yes Yes    

 ϕ Yes Yes Yes Yes Yes Yes No NA    

2 β Yes  Yes Yes Yes Yes Yes No NA 12180.0 82.6 0.00 

 γ Yes Yes Yes Yes Yes Yes No NA    

 ϕ Yes Yes Yes Yes No Yes Yes Yes    

3 β Yes  Yes Yes Yes No Yes Yes Yes 11771.8 1565.1 0.00 

 γ Yes Yes Yes Yes No Yes Yes Yes    

 ϕ Yes Yes Yes Yes No Yes No NA    

4 β Yes  Yes Yes Yes No Yes No NA 12562.7 75.8 0.00 



 γ Yes Yes Yes Yes No Yes No NA    

 ϕ Yes Yes Yes Yes Yes Yes Yes No    

5 β Yes  Yes Yes Yes Yes Yes Yes No 11776.7 1180.3 0.00 

 γ Yes Yes Yes Yes Yes Yes Yes No    

 ϕ Yes Yes Yes No No Yes Yes Yes    

6 β Yes  Yes Yes No No Yes Yes Yes 11821.1 1504.2 0.00 

 γ Yes Yes Yes No No Yes Yes Yes    

 ϕ Yes Yes Yes No No Yes Yes  No    

7 β Yes Yes Yes No No Yes Yes No 11810.8 1583.6 0.00 

 γ Yes Yes Yes No No Yes Yes No    

 ϕ Yes Yes Yes Yes No Yes Yes No    

8 * β Yes  Yes Yes Yes No Yes Yes No 11755.8 1644.2 1.00 

 γ Yes Yes Yes Yes No Yes Yes No    

 ϕ Yes No Yes Yes No Yes Yes No    

9 β Yes  No Yes Yes No Yes Yes No 11777.3 1639.3 0.00 

 γ Yes No Yes Yes No Yes Yes No    

 ϕ Yes Yes Yes Yes No No Yes No    



10 β Yes  Yes Yes Yes No No Yes No 11954.2 1848.0 0.00 

 γ Yes Yes Yes Yes No No Yes No    

 

ϕ = survival probability. β= breeding probability. γ = probability of raising at least one chick to independence given that the individual attempted to 

breed. Age2 = quadratic effect of age on survival, breeding, and success probability. Afr = age of first breeding. Pbs = previous breeding activity and 

success. In bold: lowest-AIC model. ∗ Models used with inclusion variables (Chen and Dunson 2003). Chen, Z. and Dunson, D. B. 2003. Random 

effects selection in linear mixed models. – Biometrics 59: 762–769. 



Table A2. Inclusion variables (Chen and Dunson 2003). 

Model Prior 
probability of 
inclusion of Σ 

Prior probability 
for inclusion 

variables 

Mean Median Quantiles 

0.025          0.975 

 ϕ   1.0 1.0 1.0 1.0 

 β 0.50 0.80 0.97 1.0 0.0 1.0 

 γ   0.73 1.0 0.0 1.0 

 ϕ   1.0 1.0 1.0 1.0 

1 β 0.125 0.50 0.92 1.0 0.0 1.0 

 γ   0.40 0.0 0.0 1.0 

 ϕ   1.0 1.0 1.0 1.0 

 β 0.008 0.20 0.76 1.0 0.0 1.0 

 γ   0.14 0.0 0.0 1.0 

ϕ = survival probability. β= breeding probability. γ = probability of raising at least one chick to 

independence given that the individual attempted to breed. Chen, Z. and Dunson, D. B. 2003. 

Random effects selection in linear mixed models. – Biometrics 59: 762–769. 

 



Table A3. Estimates of coefficients and components of variance of the selected model (exclusion 

of locations-years with massive predation on eggs). 

Covariate Life 
history 

trait 

Mean Standard 
deviation 

Median Quantiles 

     0.025 0.975 

 ϕ 0.1533 0.2583 0.1581 -0.3707 0.6474 

Intercept β 4.358 0.3769 4.346 3.652 5.136 

 γ 0.8188 0.1017 0.818 0.6219 1.021 

 ϕ -0.2448 0.0468 -0.2432 -0.3409 -0.1573 

Age β 0.4817 0.0670 0.4798 0.3564 0.6194 

 γ 0.149 0.0287 0.1486 0.0935 0.2062 

Age2 β -0.0337 0.0071 -0.0337 -0.0475 -0.0198 

 

 

 

 

 

 

 

Age of first 
breeding 

4 ϕ 0.2342 0.1583 0.2318 -0.0715 0.5514  

5 ϕ 0.4303 0.1946 0.4254 0.0606 0.8228 

6 ϕ 0.7448 0.2853 0.738 0.2043 1.325 

>6 ϕ 1.832 0.5611 1.817 0.7782 2.979 

4 β -0.2155 0.2751 -0.2133 -0.7599 0.3182 

5 β -0.2749 0.3177 -0.2759 -0.8958 0.3489 

6 β -1.286 0.3956 -1.285 -2.06 -0.511 

>6 β -1.206 0.7563 -1.218 -2.648 0.3159 

4 γ -0.1197 0.1198 -0.1193 -0.356 0.1127 

5 γ -0.2025 0.1286 -0.2028 -0.4752 0.0685 

6 γ 0.0 0.2049 0.0 -0.4 0.4065 

>6 γ -0.8483 0.3719 -0.8472 -1.58 -0.1169 

 

 

4 ϕ -0.0489 0.0391 -0.0487 -0.1265 0.0268 

5 ϕ -0.1149 0.0525 -0.1142 -0.2198 0.1236 



 

 

 

 

Interaction 

6 ϕ -0.0205 0.0742 -0.0200 -0.1678 0.1053 

>6 ϕ -0.0607 0.1107 -0.0601 -0.2803 0.1555 

4 β -0.1352 0.0829 -0.1334 -0.3032 0.0223 

5 β -0.3349 0.1002 -0.3329 -0.5374 -0.1429 

6 β -0.2469 0.1208 -0.2455 -0.4873 -0.0136 

>6 β -0.1452 0.1754 -0.1447 -0.4903  0.1976 

4 γ -0.1135 0.0360 0.0 -0.0019 0.0019 

5 γ -0.0971 0.0467 -0.0971 -0.1887 -0.0473 

6 γ -0.0421 0.0744 -0.0429 -0.1862 0.1063 

>6 γ 0.0100 0.101 0.0081 -0.1842 0.2123 

 SD ϕ  1.839 0.2067 1.832 1.452 2.261 

 SD β 1.761 0.1605 1.757 1.461 2.089 

 SD γ 0.6722 0.0854 0.673 0.5039 0.8379 

Year effects SD ϕ  1.16 0.3976 1.109 0.5337 2.076 

 SD β 1.147 0.5332 1.047 0.4152 2.462 

 SD γ 0.1155 0.0597 0.1075 0.0287 0.2508 

ϕ = survival probability. β= breeding probability. γ = probability of raising at least one chick to 

independence given that the individual attempted to breed. Age2 = quadratic effect of age on 

breeding probability. SD =standard deviation. Burn-in = 10 000, 1 every 6 samples retained for 

inferences, total number of samples =50 000. 



Table A4. Sensitivity analyses. 

Prior distribution   Mean Median Quantiles 

0.025    0.975 

 Γ(0.001,0.001)  SD ϕ  1.842 1.832 1.421 2.321 

'
φτ   Γ(1,1)  SD ϕ  1.818 1.811 1.439 2.236 

 Γ(10,10)  SD ϕ  1.563  1.556 1.235 1.925 

 Γ(0.001,0.001)  SD β 1.761 1.757 1.461 2.089 

'
βτ  Γ(1,1)  SD β 1.747 1.742  1.451 2.071 

 Γ(10,10)  SD β 1.592 1.587 1.332 1.878 

 Γ(0.001,0.001)  SD γ 0.6722 0.673  0.5039 0.8379 

'
γτ  Γ(1,1)  SD γ 0.6966 0.6959 0.5447 0.8518 

 Γ(10,10)  SD γ 0.7909  0.7891  0.6756 0.9163 

	  



Appendix A7 

BUGS codes (main text, Table 1, model 1). 

model 
{ 
 
# survival probability 
for( i in 1 : 7893) { 
sur[i] ~ dbern(phi[i]) 
logit(phi[i]) <- muphi+ beta1phi * (surage[i]-meansurage) + beta2phi * pow((surage[i]-
meansurage),2)+  betafs[ageftsur[i]]+ alpha[surid[i],1] 
+year.phi[suryr[i]]+intsur[ageftsur[i]]*(surage[i]-meansurage)+bsurav[avsur[i]] 
} 
 
#breeding probability 
 for( j in 1 : 6425) { 
 breed[j] ~ dbern(br[j]) 
 logit(br[j]) <- mubreed+ beta1breed * (breedage[j]-meanbreedage) + beta2breed * 
pow((breedage[j]-meanbreedage),2)+ alpha[breedid[j],2] +year.breed[breedyr[j]] 
+betafr[ageftrep[j]] +intbreed[ageftrep[j]]*(breedage[j]-meanbreedage) +brepav[avrep[j]] 
} 
 
#success probability 
 for( g in 1 : 5541) { 
success[g] ~ dbern(suc[g]) 
logit(suc[g]) <- musuc+ beta1suc * (sucage[g]-meansucage) + beta2suc * pow((sucage[g]-
meansucage),2)+ alpha[sucid[g],3] +year.suc[sucyr[g]] +betasc[ageftsuc[g]] 
+intsuc[ageftsuc[g]]*(sucage[g]-meansucage) +betasucav[avsuc[g]] 
} 
 
#individual random effects 
for (k in 1 :  1971) { 
alpha[k, 1:3]~dmnorm(muvec[], R[,]) 
} 
 
#year effects 
for( n in 1 : 22 ) { 
year.phi[n] ~ dnorm(0.0,year.tau.phi) 
year.breed[n] ~ dnorm(0.0,year.tau.breed) 
year.suc[n] ~ dnorm(0.0,year.tau.suc) 
} 
 
#prior distributions for year effects 
year.tau.phi ~ dgamma(0.001,0.001) 
sigmaphi <- 1 / sqrt(year.tau.phi) 
year.tau.breed ~ dgamma(0.001,0.001) 
sigmabreed <- 1 / sqrt(year.tau.breed) 
year.tau.suc ~ dgamma(0.001,0.001) 
sigmasuc <- 1 / sqrt(year.tau.suc) 
 



#prior distributions for age of first breeding: survival probability 
betafs[1] ~ dnorm(0.0,1.0E06) 
betafs[2] ~ dnorm(0.0,0.001) 
betafs[3] ~ dnorm(0.0,0.001) 
betafs[4] ~ dnorm(0.0,0.001) 
betafs[5] ~ dnorm(0.0,0.001) 
   
#prior distributions for age of first breeding: breeding probability 
betafr[1] ~ dnorm(0.0,1.0E06) 
betafr[2] ~ dnorm(0.0,0.001) 
betafr[3] ~ dnorm(0.0,0.001) 
betafr[4] ~ dnorm(0.0,0.001) 
betafr[5] ~ dnorm(0.0,0.001) 
 
#prior distributions for age of first breeding: probability of breeding successfully 
betasc[1] ~ dnorm(0.0,1.0E06) 
betasc[2] ~ dnorm(0.0,0.001) 
betasc[3] ~ dnorm(0.0,0.001) 
betasc[4] ~ dnorm(0.0,0.001) 
betasc[5] ~ dnorm(0.0,0.001) 
 
#priori distribution for the interaction between age of first breeding and previous breeding state: 
survival probability  
intsur[1] ~ dnorm(0.0,1.0E06) 
intsur[2] ~ dnorm(0.0,0.001) 
intsur[3] ~ dnorm(0.0,0.001) 
intsur[4] ~ dnorm(0.0,0.001) 
intsur[5] ~ dnorm(0.0,0.001) 
 
#priori distribution for the interaction between age of first breeding and previous breeding state: 
breeding probability  
intbreed[1] ~ dnorm(0.0,1.0E06) 
intbreed[2] ~ dnorm(0.0,0.001) 
intbreed[3] ~ dnorm(0.0,0.001) 
intbreed[4] ~ dnorm(0.0,0.001) 
intbreed[5] ~ dnorm(0.0,0.001) 
 
#prior distribution for the interaction between age of first breeding and previous breeding state: 
probability of breeding successfully 
intsuc[1] ~ dnorm(0.0,1.0E06) 
intsuc[2] ~ dnorm(0.0,0.001) 
intsuc[3] ~ dnorm(0.0,0.001) 
intsuc[4] ~ dnorm(0.0,0.001) 
intsuc[5] ~ dnorm(0.0,0.001) 
 
#prior distributions for age effect: survival probability 
 beta1phi ~ dnorm(0.0,0.001) 
 beta2phi ~ dnorm(0.0,0.001) 
 
#prior distributions for age effect: breeding probability 
beta1breed ~ dnorm(0.0,0.001) 



beta2breed ~ dnorm(0.0,0.001) 
 
#prior distributions for age effect: probability of breeding successfully 
beta1suc ~ dnorm(0.0,0.001) 
beta2suc ~ dnorm(0.0,0.001) 
 
#prior distributions for intercepts 
mubreed ~ dnorm(0.0,0.001) 
muphi ~ dnorm(0.0,0.001) 
musuc ~ dnorm(0.0,0.001) 
 
#prior distributions for previous breeding state: survival probability 
bsurav[3]~dnorm(0.0,1.0E06) 
bsurav[2]~dnorm(0.0,0.001) 
bsurav[1]~dnorm(0.0,0.001) 
 
#prior distributions for previous breeding state: breeding probability 
brepav[3]~dnorm(0.0,1.0E06 ) 
brepav[2]~dnorm(0.0,0.001) 
brepav[1]~dnorm(0.0,0.001) 
 
#prior distributions for previous breeding state: probability of breeding successfully 
betasucav[3]~dnorm(0.0,1.0E06) 
betasucav[2]~dnorm(0.0,0.001) 
betasucav[1]~dnorm(0.0,0.001) 
    
meansurage<-mean(surage[1:7893]) 
meanbreedage<-mean(breedage[1:6425]) 
meansucage<-mean(sucage[1:5541]) 
 
#variance-covariance matrix for individual random effects 
R[1:3 , 1:3]~dwish(Omega[ , ],4)  
mv[1:3, 1:3] <- inverse(R[ ,  ]) 
v1<-mv[1,1] 
v2<-mv[2,2] 
v3<-mv[3,3] 
s1<-sqrt(v1) 
s2<-sqrt(v2) 
s3<-sqrt(v3) 
v12<-mv[1,2] 
v13<-mv[1,3] 
v23<-mv[2,3] 
rho12<- v12/(sqrt(v1)*sqrt(v2)) 
rho13<- v13/(sqrt(v1)*sqrt(v3)) 
rho23<- v23/(sqrt(v2)*sqrt(v3)) 
 
} 

####################################################### 
# Example of initial values for 1 chain 



list(muphi=0, mubreed=0, musuc=0, beta1phi=0, beta2phi=0,beta1breed=0, beta2breed=0, 
beta1suc=0, beta2suc=0, betafs=c(0, 0, 0, 0, 0), betafr=c(0,0,0, 0,0), betasc=c(0,0,0, 
0,0),intsur=c(0,0,0, 0,0), intbreed=c(0, 0, 0,0,0), intsuc=c(0, 0, 0,0,0),R = structure(.Data = 
c(1,0,0, 0,1,0, 0, 0,1), .Dim = c(3, 3)),year.tau.phi=1 ,year.tau.breed=1,year.tau.suc=1, 
bsurav=c(0,0,0),brepav=c(0,0,0) ,betasucav=c(0,0,0)) 

######################################################## 
#Data: 20 first elements of each vector 

list(Omega = structure(.Data = c(1,0,0,0,1,0,0,0,1), .Dim = c(3, 3)), 
muvec = c(0,0,0), 
sur=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,….), 
breed=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,….), 
success=c(0,1,1,0,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,1,…), 
surid=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,…), 
breedid=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,…) 
sucid=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,…..) 
surage=c(5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,18,7,8, 
9,10,…), 
breedage=c(5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,7,8,9, 
10,11,…), 
sucage=c(5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,7,8,9, 
10,11,…), 
suryr=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3,4,5,6, 
7,8,…), 
breedyr=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,3,4,5,6,7,…), 
sucyr=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,3,4,5,6,7,…), 
ageftsur=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,…), 
ageftrep=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,…), 
ageftsuc=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,…), 
avsur=c(1,1,2,2,1,2,2,1,2,2,2,2,1,1,2,2,1,1,1,2,2,…), 
avrep=c(1,1,2,2,1,2,2,1,2,2,2,2,1,1,2,1,1,1,2,2,…), 
avsuc=c(1,1,2,2,1,2,2,1,2,2,2,2,1,1,2,1,1,1,2,2,…)) 
 
####################################################### 
#Variable names 
 
# sur=survival/death events (7893 events) 
# breed=breeding/nonbreeding events 6425 events) 
# success=success/failure events (5541 events) 
# surid=individual id corresponding to sur (1971 individuals, vector length =7893) 
# breedid: individual id corresponding to breed (1971 individuals, vector length =6425) 
# sucid= individual id corresponding to sur (1971 individuals, vector length =5541) 
# surage=age corresponding to sur (numbering starts at 1; vector length =7893) 
# breedage = age corresponding to breed (numbering starts at 1; vector length =6425) 
# sucage=age corresponding to success (numbering starts at 1; vector length =5541) 
# suryr=year corresponding to sur (numbering starts at 1; vector length =7893 ) 
# breedyr= year corresponding to breed (numbering starts at 1; vector length =6425) 
# sucyr=year corresponding to success (numbering starts at 1; vector length =5541) 
# ageftsur=age of first breeding corresponding to sur (numbering starts at 1; vector length 
#=7893 ) 



# ageftrep=age of first breeding corresponding to breed (numbering starts at 1; vector length 
#=6425) 
# ageftsuc=age of first breeding corresponding to success (numbering starts at 1; vector length 
#=5541) 
# avsur=previous breeding state corresponding to sur (numbering starts at 1; vector length 
#=7893) 
# avrep=previous breeding state corresponding to breed (numbering starts at 1; vector length 
#=6425) 
avsuc=previous breeding state corresponding to success (numbering starts at 1; vector length 
#=5541) 
 


