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Abstract Advances in the estimation of population

parameters using encounter data from marked individuals

have made it possible to include estimates of the proba-

bility of recruitment in population projection models.

However, the projected growth rate of the population, and

the sensitivity of projected growth to changes in recruit-

ment, can vary significantly depending upon both the

structural form of the model and how recruitment is

parameterized. We show that the common practices of

(1) collapsing some age classes into a single, terminal

‘aggregated’ age-class, and (2) parameterizing recruitment

using the proportion of recruited individuals (breeders) in a

given age-class may confound analysis of age-based

(Leslie) matrix projection models in some instances, rela-

tive to state-based projection models where recruited and

pre-recruited individuals are treated as separate states.

Failing to account for these differences can lead to misin-

terpretation of the relative role of recruitment in the

dynamics of an age-structured population. We show that

such problems can be avoided, either by structural changes

to the terminal aggregated age-class in age-based models,

or by using using a state-based model instead. Since all the

metrics of general interest from a classical age-based

matrix models are readily derived from a state-based model

equivalent, this suggests there may be little reason to use

the classical age-based approach in situations where

recruitment is a parameter of interest.

Keywords Matrix projection models � Perturbation

analysis � Recruitment

Introduction

It is well known that the projected growth rate of an age-

structured population reflects the timing (schedule) of

reproduction across various age classes, except in station-

ary populations where the net reproductive rate adequately

characterizes growth (Caswell 2001). Thus, the probability

of making a permanent life-history transition from a pre-

recruit (an individual that has not bred) to a recruit (an

individual that has bred at least once) at a given age

(referred to hereafter as ‘recruitment’) is of fundamental

importance to life history theory (Stearns 1992; Caswell

2001, and references therein), and population dynamics in

general (Caswell 2001).

Many early attempts to estimate recruitment in the field

relied on ad hoc estimation methods, which may suffer

significant bias in most cases. For example, the use of

return rate (proportion of a number of individuals marked

as offspring which are observed breeding for the first time

at some later age) to assess recruitment implicitly assumes

that individuals of all ages have the same encounter

probability, and that the first encounter of an individual

provides an unbiased estimate of the age of recruitment.

However, an individual observed breeding at age i could

have bred previously at an earlier age, and simply not have
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been observed. Recent advances in the analysis of capture–

mark–encounter data have provided a robust framework for

estimation of and analysis of variation in recruitment while

controlling for possible differences in encounter probabil-

ity and imperfect detection of breeding individuals (Clobert

et al. 1994; Nichols and Kendall 1995; Pradel and Lebreton

1999; Schwarz and Arnason 2000; Williams et al. 2002;

Crespin et al. 2006; Jenouvrier et al. 2008; Nevoux et al.

2010; see Lebreton et al. 2009 for a recent review). Recent

work by Cam et al. (2005) considered the influence of

assumptions concerning equivalence of survival probability

of pre-breeders and breeders if pre-breeders are un-

observable (Clobert et al. 1994; Pradel and Lebreton 1999).

Despite advances in our ability to estimate recruitment,

questions remain concerning the most appropriate measure

of recruitment to use in population models, reflecting dif-

ferences in how recruitment is defined. While earlier dis-

cussions by Frederiksen and Pradel (2001) and Schwarz

and Arnason (2001) clarified some issues, we believe

several questions remain. In particular, they did not address

the possible interaction between model structure and how

recruitment is defined and entered into population models.

Here, we briefly review common measures of recruit-

ment. We show that analysis of the influence of recruitment

on population growth can be significantly affected by the

choice of recruitment parameter, and the manner in which

recruitment is entered into the population projection model.

We show that, in general, recruitment should be defined as

the probability that an as yet inexperienced (pre-breeding)

individual of a given age starts to breed at that age, and that

recruitment is most conveniently, and robustly, analyzed

using a multi-stage projection matrix including separate

stages for pre-recruit and recruited individuals, rather than

the more commonly used age-based (Leslie) matrix mod-

els, which assume that all individuals of a given age are

identical and have a common reproductive rate.

Measures of recruitment

We define the ‘probability of recruitment’ as the probability

(age-specific) of making a one-time, permanent state transi-

tion from pre-recruit (an individual that has not bred) to a

recruited or ‘breeding’ individual. Recruited individuals are

those which have bred at least once. We distinguish

‘recruitment’ from subsequent ‘breeding propensity’, which

we define as the probability that, given that you have bred

before, that you breed in a given year. We do not consider the

parametrization and modeling of breeding propensity here.

Pradel and Lebreton (1999) and Frederiksen and Pradel

(2001) considered 3 related parameters (a, a and p) which

together can be used to describe recruitment. Each of these

parameters can be estimated using encounter data from a

sample of individuals marked as offspring.

ai, the probability that an as yet inexperienced individual

of age i starts to breed at that age, given in general by

ai ¼
1� cið Þ

Pi�1
j¼1 aj

Qj�1
k¼0 1� akð Þ

ci

Qi�1
j¼1 1� aj

� � ð1Þ

where ci is the probability that an individual alive and

breeding in the population at time (age) i was also alive

and in the population at time i - 1 (Pradel 1996). In

addition, under some assumptions (Pradel and Lebreton

1999), this parameter ai is strictly equivalent to the

parameter wxy
i derived using multi-stage approaches

(where wxy
i is the probability of moving from stage x to

stage y over the interval from i to i ? 1; sensu Brownie

et al. 1993). ai is the ratio of the number of first time

breeders to the sum of first time breeders and pre-

breeders at age i (Pradel and Lebreton 1999).

ai, the probability that an individual of age i is a first-

time breeder, where

ai ¼ ai

Y

y� j\i

1� aj

� �
; i� f ð2Þ

ai is the proportion of first-time breeders among all

individuals alive at age i (Pradel and Lebreton 1999),

where y is the youngest breeding age, and f is the age of

full-breeding (i.e. where af = 1), and assuming equal

survival of recruits and pre-recruits at the same age.

pi, the probability that an individual of age i is a breeder

(i.e. the proportion of all animals of age i that are

breeders) (Frederiksen and Pradel 2001), where

pi ¼
X

i¼y

ai ð3Þ

where y is the youngest breeding age.

Clearly, ai is equivalent to recruitment as we have

defined it. However, age-based (Leslie) projection models

are parameterized using net (average) contributions from

one age class to another. In such models, recruitment is a

component of the net fertility contributions to the offspring

age class. In such cases, the appropriate recruitment

parameter to include in the model is the age-specific

‘breeding proportion’; i.e. the proportion of individuals of a

given age class which breed, and contribute to the offspring

class.

Schwarz and Arnason (2000) suggested that the proba-

bility that an animal that (1) survives until it starts breeding

will (2) do so (i.e. start breeding) at age j ? 1 (their

parameter bij) be referred to as ‘age-specific breeding pro-

portion’ (or probability). However, Frederiksen and Pradel

(2001) showed that bij is in fact a separate population

parameter, and is not appropriately defined as ‘age-specific

breeding proportion’. They suggested that the term ‘age-

specific breeding proportion’ should be applied to pi (Eq. 3),
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and that it is pi that is the relevant lower-level element of

the fertility term in age-based projection matrix models

(Frederiksen and Pradel 2001; Schwarz and Arnason 2001).

We note that this implies that recruited individuals breed

every year (i.e. breeding propensity is 1).

Recruitment and population growth

We introduce some potential issues in parameterizing

recruitment in population projection models by means of a

series of simple numerical examples. We assume throughout

that recruitment is in situ, and that the number of breeding

individuals is unaffected by asymmetric immigration and

emigration. While it is possible to accommodate such

movement in matrix projection models (e.g., Cooch et al.

2001), we do not address this issue here. We also assume

equal survival among pre-recruits and recruits of the same

age (cf. Cam et al. 2005). We begin by considering the

classical age-based projection model assumed by Frederiksen

and Pradel (2001) and Schwarz and Arnason (2001).

Age-based matrix model

Consider a population where the earliest age of breeding

y is 2 years of age (i.e. no recruitment prior to 2 years of

age). Fecundity B increases monotonically from age 2 to

age 4, and is independent of age for all individuals 4 years

and older (age of full-breeding, f = 4 years). We make two

assumptions concerning recruitment. First, we assume that

all individuals aged Cf have been recruited to the breeding

population, and that once recruited, individuals breed every

year. We also assume that both recruitment and breeding

occur immediately after survival of an individual from time

i to i ? 1 (such that the recruitment and fecundity

parameters are indexed based on the age of the individual

at time i ? 1). Survival of newborns over their first year So

differs from subsequent ‘adult’ survival Sa, which is

independent of age. Following Frederiksen and Pradel

(2001) and Schwarz and Arnason (2001), let pi (Eq. 3) be

the proportion of breeders among all animals aged i.

Assuming a post-breeding census, we represent this

population model using a life-cycle graph (Fig. 1; Caswell

2001). The projection matrix model corresponding to the

life-cycle graph in Fig. 1 is

0 Sap2B2 Sap3B3 Sap4B4

So 0 0 0

0 Sa 0 0

0 0 Sa Sa

0

B
B
@

1

C
C
A ð4Þ

Note that the life-cycle graph includes a ‘self-loop’ on

node 4. Such a self-loop generates a ‘terminal node’ which

contains all surviving individuals greater than or equal to

the minimum age on entry into that node (3 years of age, in

this example). Such truncation of the life-cycle graph (by

means of a self-loop on a terminal node) is appropriate only

if there is no further change with age in any of the

parameters contributing to either survival or fertility arcs

emanating from the terminal node. When this not the case,

truncation results in a model which is only an approxi-

mation to the true underlying infinite matrix (see Gosselin

and Lebreton 2009); metrics derived from such approxi-

mations will be biased (here, we use the term ‘bias’ to

indicate a departure from the metric derived from the ‘true’

(correct) projection model). In the present example, we

have assumed that there was an age-class f at which

ai C f = pi C f = 1.0 (i.e. an age class where all individu-

als are recruits). In our example, this age class f corre-

sponds to the terminal node in the life-cycle graph. Since

all lower-level parameters (S, B, p) for individuals in the

terminal node are independent of age, metrics calculated

from the projection matrix corresponding to this life-cycle

graph (e.g., projected growth rate k) will be unbiased.

However, suppose that ai \ 1,Vi (i.e. there is no age at

which the probability of recruiting is 1), but where there is

an age f beyond which ai C f is constant. Given this age

invariance in ai for i C f, it might seem reasonable to

truncate the life-cycle at age f. However, following Eqs. 2

and 3, age invariance in a is not equivalent to age invari-

ance in p unless a = 1 at some age. Thus, truncating the

life-cycle graph at age f would result in a terminal node

comprised of exponentially decreasing proportions of

newly recruited f year individuals, f ? 1 year individuals

which may either be (1) new recruits or (2) individuals that

Fig. 1 Life-cycle graph and structure of the hypothetical age-based

population model. Transitions between age classes (nodes) are

indicated by arrows. Transition labels indicate the probability of

individuals at one stage (start of arrow) moving or contributing to the

node at the end of the arrow over the projection interval. Node 1
refers to offspring, 2 to yearlings, 3 to 2 year individuals, and 4 to

individuals C3 years of age. We assume transitions occur over the

time scale of 1 year. Parameters S and B refer to age-specific survival

and fertility, respectively. The parameter pi refers to the proportion of

animals of age i that are recruits (Eq. 3), which is assumed to

represent the proportion of breeding individuals in each age-class.

The parameterization and indexing of the fertility arcs reflects the

assumption that recruitment and fecundity occur immediately

following survival
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recruited at age f, and so forth. Such heterogeneity would

bias projected growth rate k; if there is no age class f for

which ai[f = 1.0, then if the dimension of the age-based

projection matrix is less than the age class at which the

limit for pi = 1.0, the projected growth rate k will be rel-

atively negatively biased.

There are number of ways to avoid this problem. First,

we could reparameterize the current model by recalcu-

lating the value of p included in the fertility arc ema-

nating from the terminal node as an average of the pi

values, weighted by the expected frequency of each age

class i in terminal node. Alternatively, we could increase

the number of nodes in the life-cycle graph, such that

p & 1 in the terminal node. The number of additional

nodes (i.e. age classes) would be determined by the age

class (f) at which pf & 1.0, which can be found either

by (1) finding the approximate limit for pi (Eq. 3), or (2)

by using a Markov chain decomposition (discussed

below) to determine the expected proportion of breeders

in each age class (i.e. pi), and thus identifying the age

class for which this proportion is &1. Since the limit of

pi (Eq. 3) is �1 if ai \ 1,Vi, either approach will only

approximate the underlying infinite matrix (Gosselin and

Lebreton 2009); the accuracy of the approximation will

be a function of the number of age classes included in

either (1) or (2).

Consider the following simple numerical example. Let

So = 0.5, Sa = 0.8, B2 = 0.6, B3 = 0.7, B4? = 0.8. Let

a2 = 0.35, a3 = 0.7, and a4? = 0.9. From Eq. 2,

a2 = a2 = 0.35, a3 = a3(1 - a2)(1 - a1) = 0.455, and

a4 = a4(1 - a3)(1 - a2)(1 - a1) = 0.1755. From Eq. 3,

the proportion of breeders pi at each age i are calculated as:

p2 = 0.35, p3 = (0.350 ? 0.455) = 0.805, and p4? =

(0.350 ? 0.455 ? 0.1755) = 0.9805. If we ignore for the

moment that our estimate of p4? \ 1, and use the truncated

life-cycle shown in Fig. 1, then from Eq. 4

0 Sap2B2 Sap3B3 Sap4þB4

So 0 0 0

0 Sa 0 0

0 0 Sa Sa

0

B
B
B
@

1

C
C
C
A

¼

0 0:168 0:451 0:628

0:5 0 0 0

0 0:8 0 0

0 0 0:8 0:8

0

B
B
B
@

1

C
C
C
A

The projected growth rate from this projection matrix is

k = 1.0369.

However, since p4? \ 1, we expect that this projected

growth rate is negatively biased. Given a2 = 0.35,

a3 = 0.7, and a4? = 0.9, pi& 1.0 (to within three signif-

icant digits) for i = 6. Extending our age-based model

(Eq. 4) to include at least 6 age classes results in the fol-

lowing projection matrix

0 0:168 0:451 0:628 0:639 0:640

0:5 0 0 0 0 0

0 0:8 0 0 0 0

0 0 0:8 0 0 0

0 0 0 0:8 0 0

0 0 0 0 0:8 0:8

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð5Þ

which yields a projected growth rate of k & 1.0389, which

as expected is higher than the projected growth when only

4 age classes were used.

State-based model

While extending the age-based matrix to include more age

classes is straightforward, a more direct approach is to use

a model based on a state-based projection matrix where

age-specific transitions between stages are explicitly

included (sensu Lebreton 2005). In such a state-based

matrix model, we treat recruits (i.e. first-time breeders) and

pre-recruits as discrete ‘states’, with age-specific transition

probabilities between the two states. To do so, we must

consider the probability that if alive and in state N (non-

breeder) at age i, that the individual will be alive and in

state B (breeder) at time i ? 1. This is simply the product

of the probability of surviving from i to i ? 1, and the

probability of recruiting at time i, which is ai (Eq. 1; Pradel

and Lebreton 1999).

The life-cycle graph for the state-based equivalent for

our original truncated age-based model (Fig. 1) is shown in

Fig. 2. The projection matrix corresponding to this state-

based life-cycle graph is:

0 Saa2B2 SaB3 SaB4 Saa3B3 Saa4þB4

So 0 0 0 0 0

0 Saa2 0 0 0 0

0 0 Sa Sa Saa3 Saa4þ
0 Sa 1� a2ð Þ 0 0 0 0

0 0 0 0 Sa 1� a3ð Þ Sa 1� a4þð Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð6Þ
Again, we consider the case where there is no age

class f for which ai C f = 1.0. We showed previously

(‘‘Age-based matrix model’’) that under this assumption,

estimates of population growth from an age-based projec-

tion matrix will be negatively biased if the dimension of

the matrix is less than the age class at which the limit for

pi&1.0 (i.e. if the model is truncated at an age class where

p\ 1). As in our age-based model example, let a2 = 0.35,

a3 = 0.7, and a4? = 0.9. Using an extended age-based

matrix approach with 6 age-classes (Eq. 5), we calculated

projected growth rate as k & 1.0388. Using the state-based

matrix (Eq. 6), we obtain an identical value for projected

S588 J Ornithol (2012) 152 (Suppl 2):S585–S595

123



growth rate, k = 1.0388, without increasing the dimension

of the state-based model, even though ai \ 1.0, Vi.

From the state-based model, we can calculate the

expected proportions of breeders, pi, for all age classes,

including i C 3 years. If we decompose the projection

matrix A into a fecundity matrix F and a transition matrix

T (Cochran and Ellner 1992; Caswell 2001; Tuljapurkar

and Horvitz 2006), then the individuals in age class i ? 1

have a stage distribution proportional to k-iTiFw. Thus,

the stage distribution of newborn individuals i = 0 is given

as Fw, of 1 year-olds is k-1TFw, of 2 year olds is

k-2T2Fw, and so on. The proportions of individuals of age

i in each stage can be determined by normalizing the totals

in each age to sum to 1. For the present example, pi is

simply the normalized proportion of breeders, calculated

for each age class i. If a2 = 0.35, a3 = 0.7, and a4? = 0.9,

then for age i = 2–6, the equilibrium proportion of indi-

viduals in each state (nodes 1! 6) are

Stage i = 2 i = 3 i = 4 i = 5 i = 6

1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.350 0.000 0.000 0.000 0.000

4 0.000 0.805 0.980 0.998 1.000

5 0.650 0.000 0.000 0.000 0.000

6 0.000 0.195 0.020 0.002 0.000

For age i = 2, 35% of the individuals are expected to be

breeders (corresponding to node 3). For age 3, 80.5% are

expected to be breeders (node 4). At age 4, 98.05%

are expected to be breeders (again, node 4), and so forth.

These correspond to the values of p2 = 0.35, p3 = 0.805,

and p4 = 0.9805 calculated for the age-based model

(‘‘Age-based matrix model’’). We note that all surviving

6 year-old (and older) individuals are in stage 4 (recruited

breeders; Fig. 2). This is consistent with the limit p6&1.0

which we used to determine the number of age classes

needed in the extended age-based projection matrix model

to minimize bias in projected growth rate (‘‘Age-based

matrix model’’, Eq. 5).

Recruitment parameterization and perturbation

analysis

The preceding suggests that state-based matrix projection

models, parameterized directly using estimates of ai, may

have several advantages when compared to more tradi-

tional age-based matrix model approaches. In particular,

estimates of asymptotic population growth rate are unbi-

ased, even under circumstances where ai \ 1,Vi. Moreover,

exact methods for estimation of age-specific parameters

from state-based models have been developed (Cochran

and Ellner 1992; Caswell 2001; Tuljapurkar and Horvitz

2006).

Two important metrics commonly derived from matrix

models are the relative sensitivity and elasticity of the

projected growth rate k to variation in a particular element

xij of the matrix A (sensitivity and elasticity analysis are

collectively referred to as perturbation analysis, since they

assess the projected numerical response of growth rate to

perturbation of particular matrix elements; Benton and

Grant 1999; de Kroon et al. 2000; Caswell 2001).

Our interest here concerns the role model structure may

play in analysis of the influence of variation in recruitment

on population growth. We assume recruitment is an age-

specific probability, such that not all individuals recruit at

the same age. This differs from many analyses of com-

parative life histories that have historically used integer age

of first breeding as the parameter of interest, rather than

recruitment, although clearly age of first breeding is

directly related to the underlying age-specific recruitment

probabilities. Such an approach is perhaps convenient,

especially when only partial life-table data are available,

such that direct estimates of recruitment are unavailable.

Here, we assume that the mean age of first-breeding is non-

integer, with non-zero variance, reflecting age-specific

differences in recruitment, which we can estimate in some

fashion using data from marked individuals. Oli and Zinner

(2001) proposed assessing the sensitivity of projected

growth k to age of first breeding using implicit differenti-

ation of the characteristic equation for k with respect to the

Fig. 2 Life-cycle graph and structure of the hypothetical state-based

population model. Transitions between stage classes (nodes) are

indicated by arrows on the graph. Transition labels indicate the

probability of individuals at one stage (start of arrow) moving or

contributing to the node at the end of the arrow. Transitions occur

over the time scale of 1 year. Node 1 refers to offspring, 2 to yearlings

(which do not breed), 3 to breeding 2 year individuals, and 4 to

breeding individuals 3? years of age. Nodes 5 and 6 refer to non-

breeder (pre-recruit) individual’s age 2 and 3? years, respectively
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mean age of first breeding, estimated using a weighted

average based on proportions of individuals recruiting at a

given age (which is related, but not equivalent to p; Eq. 3).

Here, however, we focus on recruitment (a; Eq. 1) directly,

rather than parameter(s) (like mean age of first breeding)

which are functions of the underlying parameter a.

Perturbation analysis: a numerical example

Consider the following example. We assume a population

censused after breeding where individuals can breed for the

first time at 1 year (with probability a1), with full breeding

by age 2 years (i.e. ai C2 is a constant, with aiC2 [ a1).

Age-specific fecundity is given as Bi. Survival probabilities

are also age-specific (So and Sa for offspring and adults,

respectively). We assume that once recruited, individuals

breed every year. Using a state-based modeling approach

(‘‘State-based model’’), we represent this population by

means of the life-cycle graph shown in Fig. 3.

The projection matrix corresponding to this life-cycle

graph is:

Soa1B1 SaB2 Saa2B2

Soa1 Sa Saa2

So 1� a1ð Þ 0 Sa 1� a2ð Þ

0

@

1

A ð7Þ

We wish to determine if the structure of the projection

model (state- or age-based) affects our analysis of the

sensitivity of projected growth rate k to changes in

recruitment. Such a comparison requires construction of

an age-based model which is ‘equivalent’ to the state-based

model (Fig. 3). Does an ‘equivalent’ age-based model

exist? As we demonstrate, the answer depends on the

assumptions you make, and on what constitutes model

equivalency.

Provided af = 1 for some age f (such that pf is guar-

anteed to equal 1), we have shown (‘‘Age-based matrix

model’’) that we can construct an age-based projection

matrix of dimension f nodes (age classes) which is yields

the identical dominant eigenvalue as the state-based model.

If ai \ 1,Vi, that we can approximate the underlying infi-

nite matrix by increasing the dimension of the age-based

model such that p & 1 in the terminal node. To simplify

interpretation of any differences between the analysis of

state- and age-based matrix models, we begin by assuming

a2 = 1. Under this assumption, we construct an age-based

life-cycle graph (Fig. 4) which we expect to yield a pro-

jected growth rate identical to that calculated from the

state-based model (Fig. 3).

The corresponding projection matrix is

Sop1B1 Sap2B2

So Sa

� �

ð8Þ

which when re-parameterized in terms of ai yields:

Soa1B1 Sa a1 þ a2 1� a1ð Þ½ �B2

So Sa

� �

ð9Þ

It can be shown that the non-zero roots of the

characteristic polynomial for both models (Eqs. 7 and 9)

are, as expected, identical. (Although the characteristic

polynomial for Eq. 7 is order 3, the matrix is singular, such

that one of the roots is 0; the remaining roots are square,

and identical to the roots for Eq. 9.) This equality occurs if

and only if there is an age i = f for which ai C f = 1 (in the

present example, a2 = 1).

However, does such an equality in non-zero eigenvalues

between two models indicate their strict equivalence? For

the moment, we proceed with our perturbation analysis of

the state- and age-based models under the (naı̈ve)

assumption that it does imply equivalence. In the process,

we demonstrate that, in fact, the assumption of strict

equivalence is incorrect, and why (see ‘‘Influence of model

structure on perturbation analysis – a conundrum?’’). We

Fig. 3 Life-cycle graph and structure of the hypothetical state-based

population model, assuming a post-breeding census. Transitions

between stage classes (nodes) are indicated by arrows on the graph.

Transition labels indicate the probability of individuals at one node

(start of arrow) moving or contributing to the node at the end of the
arrow. Transitions occur over the time scale of 1 year. Node 1 refers

to newborns, 2 breeding individuals, and 3 non-breeding individuals

Fig. 4 Life-cycle graph of an age-based population model equivalent

to the state-based model shown in Fig. 3, assuming a2 = 1. Node 1
refers to newborns, and 2 to individuals C 1 year of age. Transitions

between age classes (nodes) are indicated by arrows on the graph.

Transition labels indicate the probability of individuals from one node

(start of arrow) moving or contributing to the node at the end of the
arrow, assuming a post-breeding census. Transitions occur over the

time scale of 1 year
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adopt this approach to demonstrate the ease with which a

simple but critical error might be made.

To compare sensitivities for the state- and age-based

matrix models numerically, we used the following

parameter values: So = 0.5, Sa = 0.8, a1 = 0.5, a2 = 1.0,

B1 = 0.7, B2 = 0.9. (Since a1 and a2 are measured on the

same scale, for purposes of convenience we restrict further

discussion to comparisons of sensitivities only.)

The state- (Eq. 7) and age-based (Eq. 9) matrices given

these parameter values are, respectively:

Astage ¼
0:175 0:720 0:720

0:250 0:800 0:800

0:250 0 0

0

@

1

A

Aage ¼
0:175 0:720

0:500 0:800

� �

As expected, the projected growth rate is identical for

both models (k = 1.164).

The sensitivity matrices for the state- and age-based

model are, respectively:

Sstage ¼
0:269 0:312 0:058

0:532 0:617 0:114

0:532 0:617 0:114

0

@

1

A

Sage ¼
0:269 0:370

0:532 0:731

� �

For the state-based matrix (Eq. 7), the sensitivity of k
with respect to the a1 is 0.094, and with respect to a2 is

0.042. Using the age-based matrix parametrization (Eq. 9),

the sensitivity of k with respect to a1 is 0.094, which is

precisely the same value calculated for the state-based

matrix. However, the sensitivity of k with respect to a2

calculated from the age-based matrix is 0.133, which is

markedly different from the value calculated for a2 from

the state-based matrix (0.042).

Influence of model structure on perturbation analysis –

a conundrum?

In the preceding example, the projected growth rate k from

the state-based model was found to be almost twice as

sensitive to variation in probability of recruitment at age 1

(0.094) versus age 2 (0.042). However, if we had used an

age-based matrix approach, the relative sensitivities were

reversed, and of different numerical value for a2 (0.0942

for a1 vs. 0.1330 for a2).

Taken at face value, this would imply that in the state-

based matrix, there is a greater influence of a change in the

probability of breeding as a 1 year old on population

growth, while in the age-based matrix, the probability of

breeding as a 2 year old has the greatest absolute influence

on population growth. Since sensitivities are strictly

analogous to selection differentials (Caswell 2001), and

since a1 and a2 are measured on the same scale (as [0,1]-

bounded probabilities), this would imply that in the state-

based matrix, there is stronger selection on probability of

breeding as a 1 year old, while in the age-based matrix,

selection acts most strongly on probability of breeding as a

2 year old.

Clearly, this is problematic since we have assumed that

both models are strictly equivalent (based on equality of

projected growth rate k between the two models). As such,

we would not anticipate that sensitivity analysis for a

particular parameter would depend on the particular model

formulation used. What is the explanation for this

difference?

There are at least two important issues here which relate

what would appear to be a conundrum: the first relates to

why the sensitivity of k to af (a2 in the preceding example)

differs between state- and age-based models, even when

af = 1. The second concerns the situation when ai \ 1,Vi.

When there is full breeding (af = 1)

The apparent difference in sensitivity of k to af even when

af = 1 reflects an inconsistency between the aggregation of

all recruited individuals in the terminal self-loop and the

definition of the parameter ai. Recall from Eq. (1) that ai is

the probability that a pre-recruit makes a permanent single

time-step transition to breeder. Thus, in order to evaluate

the sensitivity of projected growth to variation in ai, the

terminal node cannot represent an aggregation of both (1)

individuals which make the permanent state-transition

from pre-recruit to recruit in a given time step i with (2)

individuals which have made the permanent state-transition

at a previous time step \i. Thus, the solution is to modify

the structure of the age-based model by creating separate

‘classes’ (nodes in the life-cycle diagram) for individuals

breeding for the first time at the age of full recruitment,

followed by a terminal node representing surviving indi-

viduals older than the age of full breeding. Specifically, if

f is the age at which all individuals are recruits (i.e. pf & 1,

where pi is the probability that an individual of age i is a

breeder; Eq. 3), we extend the life-cycle graph to consist of

f ? 1 nodes, where the new terminal node aggregates

surviving individuals which recruited at an earlier age (and

this does not contain any new recruits). The sensitivity

analysis would be based on the projection model corre-

sponding to this modified life-cycle graph.

We demonstrate this as follows. In our example,

a1 = 0.5, and a2 = 1.0. Thus, p1 = 0.5, and p2 = 1.0 -

meaning, 100% of individuals age 2 or older are recruits

(i.e. f = 2). We modify the original age-structured life-

cycle graph (Fig. 4) by adding a third node (Fig. 5) to

temporally separate first-time recruits at age 2 (node 2)
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from surviving individuals (age [2 years) that recruited at

a younger age. The important distinction between the two

life-cycle graphs is that in Fig. 4 the fertility arc for node 2

represents contributions from both individuals recruited at

age 2 and older, whereas in Fig. 5, the fertility arc for node

2 represents contributions from individuals recruiting at

age 2 only, while the fertility arc for node 3 represents

contributions from individuals which have previously

recruited (since p2 = 1.0 for this example; meaning that

all individuals in node 2 will recruit over the next time

step).

The projection matrix model corresponding to Fig. 5 is

(parameterized in terms of p to preserve space) is

Sop1B1 Sap2B2 Sap3B2

So 0 0

0 Sa Sa

0

@

1

A

¼
0:175 0:720 0:720

0:500 0 0

0 0:800 0:800

0

@

1

A ð10Þ

The fertility elements for nodes 2 and 3 are identical

(0.720) because for this example, p2 = p3 = 1.0, and thus

the product terms on the fertility arcs for both nodes are the

same. We discuss the importance of this later.

The sensitivity matrix corresponding to this modified

age-based matrix is

Sage;modified ¼
0:269 0:116 0:254

0:532 0:229 0:502

0:532 0:229 0:502

0

@

1

A

Using this modified model, the sensitivity of k with

respect to a2 is

ok
oa2

¼ ok
ox1;2

� ox1;2

oa2

þ ok
ox1;3

� ox1;3

oa2

¼ 0:042

which is identical to the value calculated earlier for the

state-based matrix.

Why does this modification appear to work? In the

original formulation of the model (Fig. 4) the terminal

node consisted of all individuals of age C f. By partitioning

this single node into two nodes (Fig. 5), one consisting of

new recruits at age f (node 2), and another consisting of

previously recruited individuals age [ f (node 3), we have

effectively partitioned the fertility contributions of the two

classes to population growth. Since pi C 2 = 1, then the

fertility contributions from nodes 2 and 3 are identical

(0.720). What differs between them is the relative pro-

portion of individuals in each node at equilibrium. In the

original model (Fig. 4), the stable age vector at equilibrium

is wT ¼ ð0:421; 0:579Þ, such that 57.9% of the population

at equilibrium would be 2? years of age. For the modified

model (Fig. 5), the stable age vector is wT ¼ ð0:421;

0:181; 0:398Þ, such that 18.1% of the population at equi-

librium would be 2 years of age, and 39.8% would be 3?

years of age. Note that (0.181 ? 0.398) = 0.579; in other

words, in extending the life-cycle graph by expanding the

aggregated terminal node, we are simply partitioning

the proportions of individuals aggregated in the terminal

node. Since the sensitivity of growth rate k to variation in a

matrix element xi,j is in part a function of the stable age

distribution (Caswell 2001), then partitioning the stable age

distribution by adding the additional terminal node also

partitions the sensitivity contribution between the two

nodes. Comparison of the sensitivity matrices for the ori-

ginal and modified age-based projection models make this

clear:

Sage ¼
0:269 0:370

0:532 0:731

� �

Sage;modified ¼
0:269 0:116 0:254

0:532 0:229 0:502

0:532 0:229 0:502

0

B
@

1

C
A

We see that the sensitivity of population growth to

fertility contributions for the terminal node in the original

model (0.370) has been partitioned in the modified model

(0.116 ? 0.254 = 0.370), where the partitions simply

reflect the proportions of 2 and 3? year individuals in

the modified model (0.181 and 0.398, respectively) relative

to the proportions of 2? year individuals in the original

model (0.579). For example, the proportion of 2 year

individuals in the modified model relative to the proportion

of 2? year individuals in the original model (0.181/

0.579 = 0.313) represents the proportional partition of the

sensitivity for 2 year individuals in the modified model

(0.313 9 0.370 = 0.116).

Evaluating the sensitivity of population growth k with

respect to some lower-level parameter (like ai) involves

summing the products of (1) the partial derivative of k with

respect to each matrix element xij that contains the

parameter (i.e. the sensitivity of k with respect to a given

matrix element xi,j) and (2) the partial derivative of the xij

with respect to the parameter (Caswell 2001). For this

example,

Fig. 5 Modified life-cycle graph and structure of the age-based

population model presented in Fig. 4, where node 1 refers to

newborns, 2 to individuals 1 year of age, and new node 3 to

individuals C2 years of age
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ok
oa2

¼ ok
ox1;2

� ox1;2

oa2

þ ok
ox1;3

� ox1;3

oa2

We note that the product

ok
ox1;2

� ox1;2

oa2

¼ 0:116 � oðSa½a1 þ a2ð1� a1Þ�B2Þ
oa2

¼ 0:116 � ðSa½1� a1�B2Þ
¼ 0:116ð0:36Þ
¼ 0:042

which is the value reported earlier for the sensitivity of k to

a2.

However, since a2 still occurs as a parameter in the

fertility contributions for both node 2 and node 3 in our

example, then if qk/qa2 = qk/qx1,2, then qk/qx1,3 must

equal 0. In fact, this will always be true given that

af = af?1 = 1, because (1) af?1 and it’s complement (1 - af?1)

occur as a product in xi,f?1 (since a C f is a constant, then

af?1 = af?1(1 - af) is equivalent to af = af(1 - af)), and

(2) the partial derivative of this function with respect to

af?1 evaluated at af?1 will always be 0.

For our example,

ok
ox1;3

� ox1;3

oa2

¼ 0:254 � oðSa½a1 þ a2ð1� a1Þ þ a2ð1� a2Þð1� a1Þ�B2Þ
oa2

¼ 0:254 � ðSa½1� a1 þ ð1� a2Þð1� a1Þ � a2ð1� a1Þ�B2Þ
¼ 0:254ð0Þ
¼ 0

When there is less than full breeding (af \ 1)

The approach presented in the preceding is only approxi-

mate when ai \ 1 Vi. In such cases, the calculated sensi-

tivity will differ from the correct value by an amount

reflecting the choice of the number of additional nodes

required for p & 1. If we let a2 in our example equal 0.9,

then the sensitivity of population growth k (where

k = 1.160, assuming all the other parameter values remain

the same) to a2 calculated using the state-based model

(Fig. 3) is 0.0475. Using a Markov chain decomposition of

the state-based model, we find that p & 1 (to within 3

decimal places) for 4 age classes (f = 4). If we modify the

age-based model to include 5 nodes (f ? 1 = 5), the sen-

sitivity of population growth k to a2 is 0.0476, which is

very close but not identical to the value calculated for the

state-based model for this example. The degree of differ-

ence gets smaller with each additional node added to the

model, but does not reach zero since the limit of pi (Eq. 3)

is �1 if ai \ 1,Vi (such that the sum of product terms in

the sensitivity is a decreasing infinite series in a2. This

contrasts with the preceding case where af = 1, where the

series is finite, terminating at node f ? 1).

Thus, if an age-based matrix model with a terminal

self-loop is used to derive sensitivities of population

growth to perturbation of age-specific recruitment prob-

ability (ai), then the contribution of this node to the

estimated sensitivity of k to ai will be the sum of the

sensitivities for all age classes contained in this node,

which will lead to positive bias in the calculated sensi-

tivity overall. This is true even if there exists an age-class

i for which ai = 1. A straightforward solution to elimi-

nate this bias involves estimating the sensitivity sepa-

rately for individuals recruiting at the age of full breeding

by partitioning the terminal node into new and previously

recruited individuals.

Discussion

While the effects of model structure (in particular, the

effect of truncating the life-cycle graph) on the calculations

of some metrics derived from age-based matrices have

been noted elsewhere (McDonald and Caswell 1993; Doak

and Morris 1999; Mollet and Cailliet 2002, 2003; Yearsley

and Fletcher 2002; Grear and Elderd 2008; Gosselin and

Lebreton 2009), the potential difficulties in incorporating

recruitment into population projection models presented in

this paper have not, to our knowledge, been previously

described. We have shown how projected population

growth rate, and relative sensitivity of growth to changes in

age-specific recruitment, can be significantly affected not

only by the choice of how the probability of recruitment is

parameterized, but also by the choice of how the popula-

tion is modeled. In particular, for age-based models where

(1) adult age classes are aggregated into a single terminal

stage (characterized by the presence of a self-loop on the

terminal node of the life-cycle graph), and (2) parameter-

izing recruitment using the proportion of recruited indi-

viduals (breeders) in a given age-class, both the projected

population growth rate (sensu Gosselin and Lebreton 2009)

and the relative sensitivity of population growth to age-

specific changes in recruitment will be biased.

It is worth noting that the inclusion of the terminal-self

loop in an age-based matrix does not necessarily bias the

sensitivity of population growth to changes in all lower-

level parameters. In general, the sensitivity to any lower-

level parameter in the terminal node is the sum of the

sensitivities for that parameter for all age classes accu-

mulated in that node. For lower-level parameters that do

not change with age beyond the minimal age class repre-

sented by the terminal node (i.e. which are constant), the

calculated sensitivity is not affected by the number of age

classes contained in that node, so long as any other lower-
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level parameters in that node are also constant. What

makes sensitivity analysis of ai different from another

parameter (say, Sa), even when it is constant over age (say,

for all age classes including and above the age of full

breeding)? The difference is in the nature of the parameter

being considered—a parameter such as adult survival Sa

occurs as a scalar constant, whereas the probability that an

individual of a given age is recruited is determined by a

limiting series, which unless care is taken, confounds

newly and previously recruited individuals in the terminal

node. Such a confounding for (say) adult survival Sa is not

a problem since individuals which do not survive are not

included with surviving individuals in the terminal node.

State-based models: a more robust approach?

While the addition of one extra ‘age’ (node) (potentially[1

additional node for situations where ai \ 1,Vi) separating

newly and previously recruited individuals accounts for the

problem, such that the calculated sensitivity of population

growth to changes in recruitment is unbiased, this approach

is somewhat cumbersome and not particularly intuitive. As

such, there appear to be clear advantages to using state-

based models to assess the role of recruitment on popula-

tion dynamics. Multi-state models are very general, and

can be structured to account for an arbitrary number of

pathways of varying complexity (Caswell 2001; Lebreton

2005; Lebreton et al. 2009). State transitions are more

easily and directly parameterized in the state-based

approach, and have more direct correspondence with

parameters estimated from analysis of data from individ-

uals marked as offspring (Pradel and Lebreton 1999;

Lebreton and Pradel 2002). In the context of this study,

analysis of multi-state population models appears to be

robust to possible violations of assumptions that are often

involved in the estimation of recruitment. The most notable

example of this involves the common assumption that there

exists an age for which ai = 1 (Pradel 1996; Pradel and

Lebreton 1999). Such an assumption may not, in fact, be

justified by the biology of the species, and relying on this

assumption to derive estimates of recruitment may com-

plicate analysis of classical age-based projection models. In

fact, even if we had robust estimates of breeding propor-

tions available from a methodology (unspecified) which

did not rely on the assumption of full breeding, there may

still be difficulties in using these estimates in a classical

age-based model.

Model complexity and parameterization: a trade-off

Yearsley and Fletcher (2002) considered the general

problem of the trade-off between model complexity and

model parameterization. They showed that, under a specific

set of conditions, it was possible to construct a simplified

version of a general (‘baseline’) model which retained

several key properties (e.g., projected asymptotic growth

rate k). They noted, however, two important consider-

ations. First, they acknowledged that the motivation for

constructing a simplified model is generally the desire to

minimize the number of parameters that need to be esti-

mated (and the amount of data needed to estimate those

parameters). In some instances, the estimation of some

parameters, especially those in aggregated stages, may not

be straightforward, or even possible, with current methods.

Second, and perhaps more critically, model construction

should be strongly conditioned by the ultimate use of the

model. In particular, they noted that not all properties of a

complex (general) model can be conserved when creating a

simplified model: ‘‘the undesirable effects of covariation

between a model’s structure and quantities of interest have

to be weighed against the benefits of model simplification’’.

Doak and Morris (1999), Mollet and Cailliet (2003) and

Lebreton (2005) make similar points. Here, we have demon-

strated such a situation where the sensitivity of projected

growth k to variation in recruitment can be strongly influ-

enced by model structure, and model parametrization. The

common use of a truncated age-based matrix for compar-

ative analysis of life-histories (e.g., Oli and Dobson 2003)

or prospective analysis can potentially complicate assess-

ment of the relative importance of key demographic

parameters (McDonald and Caswell 1993; Doak and

Morris 1999; Mollet and Cailliet 2003; Grear and Elderd

2008; Gosselin and Lebreton 2009). In general, many of

these potential difficulties can be mitigated by using a

multi-state model approach. Using such a state-structured

matrix model, estimates of population growth and the

sensitivity of growth to variation in recruitment appear to

be unbiased.
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