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Abstract. Invasive species are regularly claimed as the second threat to biodiversity. To
apply a relevant response to the potential consequences associated with invasions (e.g.,
emphasize management efforts to prevent new colonization or to eradicate the species in
places where it has already settled), it is essential to understand invasion mechanisms and
dynamics. Quantifying and understanding what influences rates of spatial spread is a key
research area for invasion theory. In this paper, we develop a model to account for occupancy
dynamics of an invasive species. Our model extends existing models to accommodate several
elements of invasive processes; we chose the framework of hierarchical modeling to assess site
occupancy status during an invasion. First, we explicitly accounted for spatial structure and
how distance among sites and position relative to one another affect the invasion spread. In
particular, we accounted for the possibility of directional propagation and provided a way of
estimating the direction of this possible spread. Second, we considered the influence of local
density on site occupancy. Third, we decided to split the colonization process into two
subprocesses, initial colonization and recolonization, which may be ground-breaking because
these subprocesses may exhibit different relationships with environmental variations (such as
density variation) or colonization history (e.g., initial colonization might facilitate further
colonization events). Finally, our model incorporates imperfection in detection, which might
be a source of substantial bias in estimating population parameters.

We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its
invasion of the United States since its introduction in the early 1980s, using data from the North
American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most
successful invasive species, at least among terrestrial vertebrates. Our model provided
estimation of the spread direction consistent with empirical observations. Site persistence
probability exhibits a quadratic response to density. We also succeeded at detecting differences
in the relationship between density and initial colonization vs. recolonization probabilities. We
provide a map of sites that may be colonized in the future as an example of possible practical
application of our work.

Key words: Breeding Bird Survey, BBS; colonization; detectability; Eurasian Collared-Dove;
hierarchical modeling; initial colonization; invasive species; recolonization; site occupancy; Streptopelia
decaocto.

INTRODUCTION

Regularly claimed as the second threat to biodiversity

and threatened species after habitat destruction (Glowka

et al. 1994 [cited in Williamson (1999)], Wilcove et al.

1998), invasive species are defined as species not

naturally present in a geographic area that have been

introduced by man, and that have succeeded in

establishing and colonizing this area. Even if only a

small fraction of transported species become established

and, of these, generally only about 1% become pests

(Williamson 1996), events of invasion are not uncom-

mon. Invasive species are present in a wide range of

taxa, from microorganisms to vertebrates, plants, and

invertebrates as compiled by the IUCN Invasive Species

Specialist Group in the Global Invasive Species

Database (available online).4 Over the last 500 years,

invasive species have been estimated to have come to

dominate 3% of the Earth’s ice-free surface (Mack [1985]

cited in Mooney and Cleland 2001). Moreover, in

Europe alone, 10 670 species (fauna and flora) have

been considered as ‘‘invasive exotic species’’ in the

framework of the European Union DAISIE program

(Delivering Alien Invasive Species Inventories for

Europe; available online).5

Although invasive species are generally presented as a

strong threat to indigenous species, many studies on thisManuscript received 11 October 2009; revised 6 April 2010;
accepted 8 April 2010. Corresponding Editor: T. J. Stohlgren.
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subject are just correlative. They cannot conclusively

determine if invasive species are responsible for the loss of

biodiversity or simply respond to what has caused this

loss, e.g., habitat alteration (Gurevitch and Padilla 2004).

Invasive exotic species are causing changes in many

ecological systems worldwide, and are altering many

communities and ecosystems (Gurevitch and Padilla

2004). However, because these species are not the only

element affecting biodiversity and because they usually

co-occur with other threats, it is essential to understand

invasion mechanisms and dynamics in a wider context of

global change to develop a relevant response to the

potential consequences associated with invasions: wheth-

er to emphasize management efforts to prevent new

colonization (i.e., try to contain the invasion) or to

eradicate the species in places where it has already settled.

Quantifying and understanding what influences rates of

spatial spread is a key research area for invasion theory

(e.g., Skellam 1951, Okubo 1980, Andow et al. 1990, Kot

et al. 1996, Neubert and Caswell 2000, Wikle 2003).

Invasive spread may exhibit important features such as

the presence of a preferential direction for the spread (see

Wikle 2003, Hastings et al. 2005, Morin et al. 2009), and

may depend on the distance between ‘‘suitable’’ locations.

Determining these characteristics is essential to take

relevant management decisions.

The Eurasian Collared-Dove (Streptopelia decaocto)

is one of the most successful invasive birds in North

America (Romagosa and Labisky 2000). This species

was introduced in North America during the early 1980s

through Florida. It has been hypothesized that invasion

started in the late 1970s from the Bahamas, where

Eurasian Collared-Doves escaped from captivity, estab-

lished a wild population, and then reached Florida

(Smith 1987). This species has high colonization

capacities. It invaded Europe in less than 30 years. In

fact, in the case of the United States, it took less than 25

years for the Eurasian Collared-Dove population to

reach the west coast (Dunn and Alderfer 2006, Hooten

and Wikle 2008). Even if this species has not been

proven to be a direct threat to other species or

ecosystems, it is still logically considered as a potential

threat because it is an invasive species (Hengeveld 1993)

and therefore might compete with other species such as

Mourning Doves (Zenaida macroura), White-winged

Doves (Zenaida asiatica), or Common Ground-Doves

(Columbina passerine) (Romagosa and McEneaney

2000, Romagosa 2002). It could also be a disease vector

(Romagosa and Labisky 2000).

Hierarchical modeling has been developed and used to

estimate site occupancy (Royle and Kéry 2007). In this

framework, hierarchical models are typically based on

three components. The first component corresponds to

the data, the observed quantity. This component is

defined conditional on a second component, the state

variable (e.g., true occupancy status); the relationship

between these components is accounted for by param-

eters (e.g., detection probability). A typical recent

hierarchical model in population ecology would consti-

tute an ecological process underlying occupancy (e.g.,

balance between extinction and colonization) and a level

corresponding to the observation process (which de-

pends on detectability; Royle and Dorazio 2008).

Because non-detection is not equal to absence, this class

of models (i.e., including an observation process) is

essential when dealing with detection–non-detection

data (usually improperly named presence–absence data).

Indeed, not accounting for detection issues may lead to

substantial bias in estimating population parameters

(MacKenzie et al. 2002). This type of data is typically

the one available for invasive species, where detectability

might be an issue, especially during the beginning of the

colonization. Hierarchical models are powerful and

flexible and are used in many problems, with many

applications to public health and ecology (e.g., Banerjee

2003, Waller and Gotway 2004, Lawson 2006, Clark

2007, Gelman and Hill 2007, Lawson 2008, Ntzoufras

2009). However, to our knowledge, they have not been

used consistently to assess invasive species dynamics

(even if some examples exist; Hooten et al. 2007, Hooten

and Wikle 2008). Importantly, detectability issues

(MacKenzie et al. 2006) have seldom been taken into

account when addressing hypotheses about vertebrate

species distribution or the invasive dynamics of verte-

brate species (e.g., Ibarra et al. 2005, Ficetola et al. 2007,

Leprieur et al. 2008). This might be an extremely

important issue, as ignoring it may lead to underesti-

mation of the actual colonized area and provide

erroneous information about the key locations requiring

a special regulatory effort (e.g., locations where the

invasion is starting and where settlement has not yet

happened).

Hierarchical modeling provides a convenient means of

incorporating biological hypotheses of population dy-

namics in an explicit way. With a hierarchical approach,

it is straightforward to express population dynamics

parameters (colonization and persistence probabilities)

as functions of variables such as density or reproductive

success. Nowadays, many studies use phenomenological

models (i.e., models accounting for spatiotemporal

patterns of species detection without incorporating

specific hypotheses about ecological processes governing

species distribution) and emphasize simple descriptions

or patterns in data. Such models may lead to satisfactory

descriptions of data but are not necessarily easy to

interpret biologically. Fewer studies have focused on the

development of mechanistic approaches (Bennett et al.

2001), i.e., models accounting for species presence and

detection, with presence expressed according to explicit

ecological and biological hypotheses about the dynamics

of species distribution. Recent improvements have been

made to develop hierarchical models that account for

uncertainty by encompassing both spatial and time

dimensions (Hooten et al. 2007, Royle and Kéry 2007,

Hooten and Wikle 2008), and that directly include
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scientific insight in model processes (e.g., reaction–

diffusion motivation; Wikle 2003).

In this paper, we develop a new model based on that of

Royle and Kéry (2007). In the framework of Bayesian

modeling, we extend this model to account more

accurately for invasive colonization processes: we con-

sider an explicit spatial structure in a dynamicmodel. This

ecological process accounts for the density of occupied

sites in the neighborhood. It also considers the influence of

distance among sites. Indeed, we expect the occupancy

status of close neighboring sites to have a stronger

influence on site persistence (or colonization) probability

of a given site than remote sites. The ecological process

also explicitly accounts for the possibility of a directional

spread and allows detection of the direction of this spread,

if any. To our knowledge, this is the first time that spatial

structure has been included in a spatiotemporal occupan-

cy model with such an explicit structure formulation. The

manner in which the potential anisotropy or directional

spread is integrated in the model is a breakthrough,

especially in the framework of occupancy dynamics

modeling. We draw a distinction between initial coloni-

zation and recolonization, because an initial colonization

might facilitate further colonization events. Our model

also includes an observation process, conditional on the

underlying ecological process, to deal with detectability

issues. Importantly, we consider how previous detections

may influence, and potentially improve, detectability.

Eurasian Collared-Dove data were collected in the

framework of the North American Breeding Bird

Survey (Robbins et al. 1986) with the help of volunteer

observers. In this case, the presence of an exotic species,

easily mistaken for other dove species, might not be

properly detected the first time it appears. However, with

repeated detection events over consecutive years and the

accumulation of external confirmation of this ‘‘unusual’’

species in the region, observersmight improve their ability

to detect this species, through better identification and

more likely because of knowledge that this species is

present in the area. This is the reason why we incorporate

a potential ‘‘learning effect’’ in the observational process,

and the resulting gain in detectability.

MATERIALS AND METHODS

Eurasian Collared-Dove data are based on the

Breeding Bird Survey (BBS; Robbins et al. 1986).

This program has been monitoring avian populations

in North America since 1966. Observers are assigned

to a number of routes, where they stop 50 times. ‘‘Each

survey route is 24.5 miles long with stops at 0.5-mile

intervals. At each stop, a 3-minute point count is

conducted. During the count, every bird seen within a

0.25-mile radius or heard is recorded. . . . Over 4100

surveyed routes are located across the continental

United States and Canada’’ (BBS web site).6 For each

survey route, these raw data include the number of

stops where individuals of a given species have been
detected, and the total number of individuals detected.

Because we are interested in occupancy status (not in
abundance), we decided to perform our analyses on

the number of stops where the Eurasian Collared-
Dove has been detected. Joseph et al. (2006) have
shown that abundance methods lead to a larger

variation in estimations than detection–absence meth-
ods. Moreover, they have shown that presence–

absence surveys were more optimal for low budget
and low detectability. These points and the fact that

detection–non-detection data are often easier to obtain
led us to choose this type of data (depending on

conditions, one can decide to use abundance, as in
Wikle [2003]).

We used data from 1986 (first detection of the
European Collared-Dove in the United States in the

BBS data set) to 2006. We developed a grid over the BBS
map region, merging data from all routes contained in

the same grid cell. This grid goes from the point of
spatial latitude and longitude coordinates (248;�1298) to

the point (578;�518). The side length of a cell is equal to
18. We did not take into account grid cells that only

correspond to ocean. We did not consider grid cells that
did not have at least one neighbor cell; therefore we
considered a total of 1259 cells.

We define the neighborhood of a cell i as the first (N1)

and second (N2) layers that surround this cell. Although
cells in the first layer N1 share a border with cell i, cells
in the second layer N2 are separated from cell i by one

cell, as shown in Fig. 1. We expect the influence of one
site (i.e., cell) occupancy status on another to decrease

with increasing distance between the two sites. This
means that the occupancy status of a close site should

have a stronger influence on the probability of
occupancy of a given site that sites that are located

farther away, as in a diffusive process.

THE MODEL

Occupancy state model

We considered occupancy data obtained by repeated
sampling of i¼ 1, 2, . . . , M spatial units (i.e., patches, or

‘‘sites,’’ depending on the context; here cells), over t¼ 1,
2, . . . , T periods of time. Usually, these periods of time

refer to significant biological seasons, depending on the
species of interest. For reference, all parameters used in

our model are summarized in Table 1.
The dynamics of the occupancy status will be

accounted for by two parameters: persistence / or its
complement, local extinction: (1 � /), and colonization

c. Both can be indexed by time and/or site depending on
the question of interest. For example, we may consider

that site persistence (i.e., a cell staying occupied) varies
over time depending on the growth rate in a population

(stable, growing, or declining). If the population is
declining, the persistence of sites will decrease as the

number of individuals decreases. On the other hand,6 hhttp://www.pwrc.usgs.gov/bbsapps/i
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colonization probability may vary among sites with

different characteristics.
Let Zi,t be the occupancy state of cell i in year t. If the

cell i is occupied at time t, then zi,t¼ 1; otherwise, zi,t¼ 0.

We are interested in the probability of site occupancy li,t

¼ Pr(Zi,t ¼ 1 j zi,t�1) (the probability that a cell is

occupied is conditional on the cell’s occupancy state in

the previous year). As in population demographic

processes of survival and recruitment, here, local

extinction and colonization can be used as parameters

to model changes in occupancy over time.

Let’s define /t the probability that an occupied site

‘‘survives’’ from time t to tþ 1, that is, given that it was

occupied at time t, the probability that it is occupied

again at time tþ 1, i.e., /t¼Pr(Zi,tþ1¼ 1 j zi,t¼ 1). Where

MacKenzie et al. (2003) used local extinction probability

(1 � /t), we prefer to use its complement, persistence

probability. In addition, let ct stand for the local

colonization probability, from time t to t þ 1, i.e., ct
(¼Pr(Zi,tþ1 ¼ 1 j zi,t ¼ 0). In this model, as in metapop-

ulation systems, local colonization can be viewed as the

analog of the recruitment process of individuals in

populations. Zi,t is a Bernoulli variable with expected

value li,t:

Zi;t j zi;t�1 ; Bernðli;tÞ ð1Þ

where

li;t ¼ PrðZi;t ¼ 1 jZi;t�1 ¼ zi;t�1Þ

¼ zi;t�1 /t�1 þ ð1� zi;t�1Þct�1: ð2Þ

In this model, the occupancy status at time t depends

on previous occupancy status. This model can be easily

extended. In particular, we consider two different stages

in the colonization process, and we structure the

dynamics parameters to take into account the spatial

structure of a point process.

Recolonization reparametrization

Here, all cells that are not occupied have the same

probability of being colonized, i.e., site colonization is

random and does not depend on the previous status of

the cell, whether it has been occupied and then deserted,

TABLE 1. Parameters used in the model for occupancy dynamics of an invasive species, the Eurasian Collared-Dove (Streptopelia
decaocto).

Parameter Description Algorithm notation

Zi,t occupancy state of cell i in year t z[i, t � 1]
li,t site occupancy probability muZ[i, t]
/i,t persistence parameter phi[i, t � 1]
ci,t initial colonization parameter gamma[i, t � 1]
hi,t recolonization parameter theta[i, t � 1]
Ai,t availability of a site for initial colonization A[i, t � 1]
Di,t local density D[i, t � 1]
wij weight reflecting importance of occupancy status of cell j on future

occupancy status of site i
computed in the algorithm

at, bt, ct intrinsic persistence, initial colonization,
and recolonization parameters, respectively

lphi0[t], lgamma0[t], ltheta0[t]

/1, c1, h1 linear factors of persistence, initial colonization, and recolonization
parameters to local density, respectively

lphi1, lgamma1, ltheta1

/2, c2, h2 quadratic factors of persistence, initial colonization, and recolonization
parameters to local density, respectively

lphi2, lgamma2, ltheta2

Ki,t number of replications in the cell i at time t K [i, t]
p detection probability p[i, t]
a, b relative contributions of layers 1 and 2 density to local density, respectively alpha, beta
d1 direction of propagation dirSpread
A 0

i;t availability for a first detection Aprim[i, t]
k1 first detection probability ObsInit
k2 gain in detectability after a previous detection DeltaObs

FIG. 1. Representation of the two layers of neighboring
cells, used in our model to estimate local density. Cell ‘‘i’’ (in
black) is the cell where occupancy state depends on the
proportion of occupied cells in both the first layer (N1, gray
cells) and second layer (N2, hatched cells) of cells that surround
cell i and constitute its neighborhood.
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or has never been colonized at all. However, it is

interesting to draw a distinction between two compo-

nents in the colonization process. We can distinguish

between a process of ‘‘first colonization’’ (i.e., the site

has never been occupied before; this could be considered

as the creation of the site in the data set), and

‘‘recolonization’’ (i.e., colonization of a site after a

previous ‘‘extinction’’). This is especially relevant for

invasive species, in which initial colonization by some

individuals might facilitate further colonization events.

For example, in the case of invasive plants, seeds can be

left by initial colonizers and can germinate long after

initial individuals have disappeared, leading to a new

and facilitated colonization event (Harrod and Reichard

2001, Keeley 2006). Although this example is not

directly valid for animals, the model proposed in this

paper can be applied to plant species with minor

modifications and therefore accounts for this particular

situation. Mechanisms for first colonization and recol-

onization can also differ; e.g., first colonization could be

related to a diffusion type of process, whereas recolo-

nization could be related to the intrinsic dynamics of the

local population. In habitat selection theory, one

hypothesis is that sites are expected to be chosen based

upon their quality; in this case, ‘‘better’’ sites should be

occupied (and reoccupied if abandoned) first, leading to

a distinction between first and recolonization probabil-

ities. These two subprocesses of colonization are

modeled by splitting the colonization parameter ct into
a first colonization parameter that will keep the name ct,
and a recolonization parameter ht. We then have to

define a new auto-covariate Ai,t that will express the

availability of a site for first colonization. Ai,t¼ 1 if the

site has never been occupied or colonized before (i.e., for

the period T, Ai,T¼ 1 if RT
t¼1 zi,t¼ 0), Ai,t¼ 0 otherwise.

Therefore, we can formally express Ai,t as the indicator

function Ai,t¼
Qt�1

k¼1(1 – zi,k), (k 2 f1, 2, . . . , t – 1g). As a

consequence, sites will have different colonization

probabilities depending on whether Ai,t ¼ 1 or Ai,t ¼ 0:

respectively, ct and ht.
Consequently, our model becomes

Zi;tþ1 j zi;t�1 ; Bernðli;tþ1Þ ð3Þ

with

li;tþ1 ¼ /tzi;t þ ctð1� zi;tÞAi;t þ htð1� zi;tÞð1� Ai;tÞ: ð4Þ

With this model, site colonization can be assessed at

two different levels depending on whether it has already

been colonized or not. We have a dynamic model, but

we wish to consider the spatial structure by including

space in the dynamic parameters.

Spatial structuration

In the model as it stands, the occupancy status of each

cell is independent of its environment (i.e., the location

of occupied cells and the spatial structure of occupancy).

However, in a large number of cases, we may want to

consider the possible impact of the spatial structure of

occupancy of several sites (i.e., in a given area) on the

fate of individual sites. We may be interested in the

influence of variation in climate on a species’ spatial

distribution, or the influence of the spatial structure of

the landscape and the changes that may occur in

environmental factors due to human activities. Despite

the obvious implications of such processes for both basic

and applied ecology, the statistical framework for

modeling of spatiotemporal occupancy systems is not

well developed, despite some recent efforts, as in Hooten

and Wikle (2008) or Zhu et al. (2005). Here, we express

the spatial structure over the dynamic parameters of

persistence, first colonization, and recolonization.

Let Ni represent the set of cells that are neighbors of

the cell i, and let ni be the number of neighbors of cell i

(i.e., cardinality of Ni ). Then we can define a spatio-

temporal autocovariate Di,t as

Di;t ¼
X

j2Ni

zj;t wij ð5Þ

where wij is a weight that can be used to specify a

difference in the influence of a neighbor site j on the fate

of site i according to the locations of sites. It can be

based on a simple connection net, where wij¼ 1 if site j is

connected to site i (for example, if the distance between i

and j is under the defined/determined threshold ‘‘influ-

ence’’ distance), and wij¼ 0 otherwise (i.e., if site i is not

in the influence area of j ). We can also set wij to weight

Di,t by the inverse distance of sites j to i, or in any other

way, depending on the decisions made to define the

connections network in a relevant manner according to

the studied topic. Although Di,t is a measurement of

local occupancy, it is important to note that it can be

viewed as a surrogate for local density in the vicinity of

cell i at time t (Royle and Nichols 2003).

We included this spatiotemporal autocovariate in the

model by allowing our dynamics parameters to depend

on the autocovariate. Let’s take the example of the

persistence parameter /. It can simply be expressed as a

function of Di,t as follows:

logitð/i;tÞ ¼ at þ /1Di;t þ /2D2
i;t: ð6Þ

It should be noted that / is now indexed by both time

period t and site i. We used a quadratic function of Di,t

to estimate /i,t; this function allows / to vary in a way

that may lead to a peak at intermediate values of Di,t.

Such a pattern may account for density dependence or

the ‘‘Allee effect’’ (e.g., Courchamp et al. 1999, Keyser et

al. 2005). Moreover, this formulation permitted us to

detect a difference between ‘‘random’’ colonization, as

might be expected in a stable metapopulation, and a

dynamic of diffusive spread such as might happen in an

expanding population. Indeed, at will represent the

‘‘intrinsic persistence parameter,’’ i.e., the parameter

describing what is happening with no neighbor ‘‘effect,’’

or when site i does not have any occupied neighbor. We
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decided to allow this ‘‘intrinsic persistence parameter’’ to

vary over time, because it can be hypothesized that at
differs when the population is growing, stable, or

decreasing. In contrast, /1 and /2 represent the influence

of occupancy of neighbors on persistence probability,

and therefore they embody diffusive or dynamic spread

due to gradients in local density or occupancy.

To summarize, our model can be described as follows:

Zi;tþ1 j zi;t ; Bernðli;tþ1Þ ð7Þ

with

li;tþ1 ¼ /i;tzi;t þ ci;tð1� zi;tÞAi;t þ hi;tð1� zi;tÞð1� Ai;tÞ
ð8Þ

where

logitð/i;tÞ ¼ at þ /1Di;t þ /2D2
i;t

logitðci;tÞ ¼ bt þ c1Di;t þ c2D2
i;t

logitðhi;tÞ ¼ ct þ h1Di;t þ h2D2
i;t

8
>><

>>:
ð9Þ

depending on

Di;t ¼
X

j2Ni

zj; t wij: ð10Þ

The ecological component of our model now has both

time and spatial dimensions. although the time dimen-

sion is supported by the link between zi,t and Zi,tþ1, the

spatial dimension is encompassed in the weights matrix

W (where wij is the influence of site j on site i ). In the

following section, we consider how observations are

related to the ecological process component of the model

and we develop an explicit model for imperfect

observation of this process.

Observation model

One of the principal sources of uncertainty in

monitoring data is that due to imperfect detection (or

‘‘detectability’’) of species. That is, a species might be

present at some point in space and time and yet go

undetected. Many modeling approaches and strategies

have been devised for dealing with this issue (Williams et

al. 2002, MacKenzie et al. 2006).

The simplest way of incorporating detectability (i.e.,

the probability of contacting an individual of the species

given that the species is present in the sites/area

sampled) is to consider sampling protocol where a cell

i has been visited repeatedly. Then Ki,t defines the

number of visits or replications in the cell i at time t, and

p is the probability that a species or individual is

detected during one stop on a road if it is present. Ki,t

corresponds to the number of routes nested in cell i

times the number of stops per route (i.e., 50). Yi,t is the

total number of stops at which a species or individual

has been detected in cell i at time t during the Ki,t visits.

Then, observation Yi,t follows a binomial with Ki,t trials

and a probability pzi,t:

yi;t ; BinðKi;t; pzi;tÞ: ð11Þ

This means that if the cell is unoccupied, thenYi,t is equal

to zero. Otherwise, the binomial probability is equal to

the detection probability. Ki,t can be viewed as analogous

to the monitoring effort. When the number of visits, Ki,t,

increases, so does the global detection probability in the

corresponding cell. Of course, p can be indexed by time

and/or site if needed, depending on the question of

interest. We have now a full time–space hierarchical

model with both ecological and observation processes.

Model adaptations

The model developed previously is a general model

that can be easily modified and adapted to a large set of

problems, each adaptation having to match the specific

questions addressed. Considering the specificities of our

data and our questions of interest (detection of invasive

spread characteristics, improvement of detectability

after a first detection), we made some adjustments to

the core model previously described.

Spatial structure.—One of the main objectives of our

work is to provide a model with temporal and a spatial

dimensions. To do this, it is important to have a clear

and logical definition of the spatial structure. Here, we

were interested in the impact of distance between sites

on occupancy.

We decided to use the proportion of occupied

neighbors in the first and second layers, respectively,

D1i,t and D2i,t, as estimators of local density for the cell i.

The proportion of occupied cells in the first layer is

just the mean of the number of occupied neighbor sites j

among the ni sites neighboring the cell i:

D1i;t ¼

X

j2N1i

wij zj;t

n1i
: ð12Þ

We defined density in the second layer in the same

way:

D2i;t ¼

X

j2N2i

wij zj;t

n2i
: ð13Þ

Then, local density Di,t of the site i at time t is a weighted

sum of relative densities in the first and the second

layers: Di,t ¼ aD1i,t þ bD2i,t.

Therefore, a and b correspond to the relative contri-

bution of each layer of neighbors. They are estimated by

MCMC (Markov chain Monte Carlo), like the dynamic

parameters. At this stage in model formulation, the

weight wij is equal to 1 because we consider each site of a

layer to be equivalent to the others. According to our

hypothesis that close sites should be more influential than

distant ones, we expect a to be higher than b.
Anistotropy or directional spread.—Anisotropy is the

property of being directionally dependent. Invasion

dynamics can be expected to exhibit such a property.

The propagation of a species may be governed by a
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specific environmental gradient (e.g., density, tempera-

ture, humidity), leading to an oriented spread instead of

a simple diffusive expansion. We added this element to

our model. Let’s consider a spread going from north to

south. In this case, the occupancy status of a site j

located north of a site i should be more influential than a

site located east or west, and even more than a site

located south.

Set a coordinate plane with standard basis, (O, x, y)

(Fig. 2), and define d1 as the angle made by vector ~m
(vector indicating the direction of propagation) and the

abscissa, and d2 as the angle made by the vector of ij
!

(going from site i to site j ) and the abscissa.

As previously explained, the weights wij can be used to

specify the spatial structure. We used this property to

estimate the impact of the direction of propagation on

dynamics parameters. We express wij depending on the

direction of the spread and the relative position of site j

compared to i, which means that we have to express wij

as a function of angle D made by vectors ~m and ij
!
, as

shown in Fig. 2. It is straightforward to show that D¼d1
– (p þ d2). Then, we find that

wj } 1þ cosðd1 � p� d2Þ ð14Þ

and

wj } 1þ cosðd1 � p� d2Þ
} 1� cosðd1Þcosðd2Þ � sinðd1Þsinðd2Þ:

We calculate d2 from coordinates of sites i and j,

respectively, (xi, yi ) and (xj, yj). We then have

cosðd2Þ ¼
xj � xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q ð15Þ

and

sinðd2Þ ¼
yj � yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q : ð16Þ

Therefore, the only unknown parameter is d1 (indicating
the angle of propagation), which will be estimated by

MCMC simulations.

We now have a hierarchical time–space model, with an

ecological process accounting for the impact of distance

among sites through a and b, and the direction of a spread
and the relative position of site j to i, through d1.
Observation process.—Concerning the observation

process, we dealt with a problem that may occur due

to the way in which raw data are collected in the BBS.

These data are collected by volunteers and are subject to

various types of uncertainty, including observer error

(Sauer et al. 1994). We think that it is interesting to

modify the observation process because of possible

misidentifications between Eurasian Collared-Dove and

Ringed Turtle-Dove, for example, and the propensity of

the observer to consider unlikely the presence of

Eurasian Collared-Dove because it is an invasive species

(i.e., non-endemic species). In fact, we think that a

previous confirmed observation may lead to larger

subsequent detection probability. In the framework of

invasive species and volunteers, the underlying idea is

that people collecting data may not identify a new

species that is not supposed to be there (nonindigenous),

and may easily confound it with another. However, as

soon as this species has been detected without doubt,

detection skills of observers may improve, and they may

no longer consider the presence of this exotic species

unlikely. We note that this is analogous to a ‘‘behavioral

response’’ in classical capture–recapture modeling (Otis

et al. 1978, Williams et al. 2002: Chapter 14).

We consider the previous observation process

yi;t ; BinðKi;t; pi;t zi;tÞ ð17Þ

but this time we allow detection probability p to vary

with time and site. We can accommodate this behavioral

response by including an effect on detection probability

of prior detection of the species:

logitð pi;tÞ ¼ k1 þ k2ð1� A 0
i;tÞ: ð18Þ

Here A 0
i;t corresponds to the availability for a first

detection. If the species has never beenpreviously detected

in patch i before time t, then A 0
i;t ¼ 1. Otherwise, A 0

i;t ¼ 0.

Then k1 is the probability of first detection (the species has
never been detected before), and k2 is the gain in

detectability due to a previous detection.

Our model now incorporates an observation process

that considers improvement in detectability. Conse-

quently, we can estimate a part of the error due to

observer inexperience.

Bayesian analysis and implementation in WinBUGS

Because of the conditional specification of this time–

space dynamic site occupancy model, the model is well

FIG. 2. Diagrammatic representation of points and vectors
used in anisotropy modeling, where d1 is the angle made by the
vector of invasion propagation~m and the abscissa and d2 is the
angle made by vector ij

!
(going from site i to site j ) and the

abscissa; O represents the origin.
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suited to Bayesian analysis via Markov chain Monte

Carlo. The model parameters were estimated using

Gibbs sampling (Casella and George 1992), which is

based on drawing samples of each unknown quantity

from their ‘‘full-conditional’’ distributions, i.e., the

distribution of a parameter conditional on all other

unknown quantities and the data (Royle and Kéry

2007). In particular, implementing our model with a

software program such as WinBUGS is straightforward.

For the analysis presented in this publication, models

were implemented under the free software package

WinBUGS 1.4.3 (Lunn et al. 2000) called from R 2.9.0

(R Development Core Team 2008) using the R add-on

library R2WinBUGS (Sturtz et al. 2005). We ran three

chains and based our inference on 100 000 samples from

the posterior distribution of parameters, after 20 000

discarded iterations. The code for this model is provided

in the Supplement. All estimates are presented with

standard deviation.

To validate our model, we compared probabilities of

detecting at least one individual in a cell for each year

from 1986 to 2005 to the detection data (i.e., the

corresponding cell has been detected or not to be

occupied) of the following year (i.e., from 1987 to 2006)

using the R package ‘‘ROCR’’ by Sing et al. (2009). We

provide the result of the area under the curve (AUC) for

the corresponding ROC diagrams for the last 15 years.

RESULTS

With a mean AUC for the last 15 years equal to 0.72

6 0.14, reaching 0.76 6 0.07 for the last 8 years, our

model can be considered to be a fair estimation of the

invasion process.

Spatial structure

Distance.—With respective values of a ¼ 0.79 6 0.12

and b ¼ 0.87 6 0.09, weights for layers 1 and 2 do not

reveal a clear prevalence of one layer over the other.

Surprisingly, and in opposition to our predictions, this

means that we failed to detect a clear influence of

distance on dynamics parameters, at least at the scale

considered here.

Invasion spread direction.—We detected a preferential

direction for the invasion spread with d1 ¼ 140.38 6

14.98. This approximately corresponds to a spread going

from southeast to northwest. This matches empirical

observations that indicate a first phase of slow

colonization toward the north, followed by a second

phase of rapid expansion toward the west, as shown in

Fig. 3. The invasion progresses mainly from east to west,

with a component south to north. Starting in Florida,

this invasion could not have proceeded other than

northerly. After that, a limitation due to latitude, with

temperatures not being suitable for this species over the

northern limit of the invasion front, is likely to appear.

In Fig. 3, we provide an example that permits us to

compare our estimations for sites that have a high

probability of being colonized (the hatched area

indicates the probability of being colonized is p . 0.5)

in 2006 based on 2005 data, and actual occupancy

observed in 2006 (gray cells). We see that estimations are

accurate and globally correspond to the actual observed

occupancy. This type of prediction map could be used

for management decisions to contain the propagation of

an invasive species. Here, using the estimation of spread

direction and the impact of density, we illustrate the

western invasion process front and the likely recoloni-

zation of some abandoned sites.

Density.—Site persistence probability (black line, Fig.

4) increases at low density and remains high at

intermediate densities before dropping at the highest

densities. Initial colonization probability (dashed line,

Fig. 4) is globally low but exhibits a quadratic

relationship with density, with virtually no initial

colonization at low and high density, and a slightly

higher value at a short range of medium densities.

Recolonization probability (dotted line, Fig. 4) is quite

high at low to intermediate densities, and then decreases

at higher densities.

Detectability

The initial detection probability estimate at the stop

level is equal to 0.03 (k1 ¼�3.44 6 0.28). Surprisingly,

after a previous detection, detection probability drops

around 0.01 (k2 ¼�1.633 6 0.5395). With such a low

detection probability, not accounting for this issue

would have led to underestimation of occupancy

probabilities and therefore the area occupied.

DISCUSSION

We have developed a time–space hierarchical model

accounting for an invasion process via estimation of site

persistence probability, initial colonization, and recolo-

nization, and their relationship with density. We were

able to detect the direction of an invasive spread, but we

have not detected any influence of distance between

occupied sites on dynamics parameters. Detection

probability estimates were low and decreased after the

first detection of the presence of the species in a site,

which is counterintuitive.

Our model provides an estimate of the direction of

spread direction consistent with empirical observations:

globally, the spread direction is toward the northwest.

The invasion started in the early 1980s through Florida.

Colonization really started in direction of the north in

the 1990s, before expanding toward the west in the late

1990s. If the spread had not followed a specific direction,

and had been globally the same in every spatial

direction, the estimate for standard error for d1 would

have been large. Compared to Wikle (2003), the

spatiotemporal model that we propose accounts for

the possibility of a directional diffusion. Moreover, here

the spatial structure is explicitly specified, which may be

interesting, especially if structures are known (or

expected) to facilitate or hamper population or individ-

ual movements. The explicit formulation of the spatial
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structure may be used to reflect a particular underlying

geographical structure that may affect the spread of the

invasion. In this study, we have considered the simplest

case with no environmental or topographical barriers,

but this could be supported by the weight matrix. If we

had considered these elements, estimation of the

direction of the spread, and impact of the distance

might have been different. For example, we might expect

the Great Plains to facilitate the invasion process,

whereas the Rocky Mountains might stop or slow down
this propagation. On the other hand, human activities

such as farming or even bird feeding in cities might help

the Collared-Dove to settle in areas in the north that

would not be particularly suitable due to lower

temperature.

A development of this model would be to estimate the

spread direction for each year to have a more accurate

and detailed description of the colonization process and

of the local anisotropic conditions, but this would

require tremendous computing time and calculus capac-

ities. This year-specific approach may permit us to

evaluate if propagation of the invasive is facilitated in

the south once the species has reached the Mexican

border, because of the suitable climatic conditions.
Moody and Mack (1988) and Hajek et al. (1996) have

discussed the importance of targeting control efforts at

the leading edge of invading populations, especially at

recently colonized sites ahead of the main body of the

invasion. If these sites are colonized, this spread can

speed the overall invasion progress. Accurate estimation

of the spread direction and colonization probabilities

can greatly improve how and where control efforts

should be devoted. For this purpose, estimates provided

by the type of model that we developed permit the

construction of predictive maps for the invasion

progress of a particular species, which should help to

target management efforts to locations where they

would be more useful and pertinent.

The relationship between site persistence probability

and density is quadratic, which may reflect an Allee

effect at low densities. The high persistence probability

at intermediate to high densities indicates that once the

species has started to spread and has settled in a

location, it tends to stay there, which leads to a durable

invasion. The slight observed decrease at the highest

densities might be due to extrapolation beyond the

observed densities. The relatively high recolonization

FIG. 3. Eurasian Collared-Dove (Streptopelia decaocto) site occupancy observations for 1996 (black squares) and 2006 (gray
squares), and our corresponding estimations of probability of being colonized in 2006 (hatched squares; probability of being
colonized . 0.5).

FIG. 4. Estimates of dynamics parameters as a function of
local density, D. (D¼ 1.0 corresponds to all neighboring sites to
be occupied.) The solid line is the site persistence probability, /.
The dashed line is the initial colonization probability, c, and the
dotted line is the recolonization probability, h.
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probability at low density indicates that even if a site is

abandoned, it will be reoccupied. The decrease of

recolonization at higher densities is probably due to

the fact that there is no available site and they all stay

occupied, considering the high persistence probability at

these densities. The low initial colonization probability

at low densities indicates that there is no initial

colonization event in isolated areas. The higher initial

colonization probability at intermediate density shows

that colonization events occur at the leading edge of the

invading population (i.e., the margin of geographical

distribution). The distinction between initial coloniza-

tion and recolonization may be useful to deal with a

wide range of topics in which these two processes (or

‘‘subprocesses’’) are influenced by different factors. For

example, in the framework of the selection of a breeding

site, we may expect higher-quality sites to be chosen first

(Møller 1982, Newton and Marquiss 1982), and when

they get deserted for any reason by individuals (e.g.,

death, dispersal, . . .), we may expect these abandoned

sites to be reoccupied first, before new breeding sites are

‘‘created.’’ Here, we have seen that initial colonization

and recolonization are influenced differently by density.

For management purposes, it may be useful to

distinguish these two subprocesses because they might

not be equally affected by control measures; the latter

may even lead to opposite effects in each subprocess,

and to an unwanted response.

We expected that weights attributed to site occupancy

status decrease as the distance between sites increases. It

is logical to think that sites close to already occupied

sites have higher persistence and colonization probabil-

ities than distant sites (especially in the case of an avian

invasive species). For example, the proximity of a source

of dispersing individuals has been shown to increase the

likelihood of a given site being colonized (Kolar and

Lodge 2001, Lockwood et al. 2005). However, our

results do not corroborate this hypothesis: we have not

detected any relationship between distance among sites

at the scale considered and the dynamics parameters.

The most likely explanation for this non-detection of a

distance effect is the scale at which we are working (i.e.,

the size of the cell). At a smaller scale, this effect might

have been detected. This may depend on the speed of the

invasion: indeed, we might expect that the site influence

area increases in size as the invasion speed increases. In

other words, if a species colonizes an area rapidly,

distant sites are as likely to be quickly colonized as close

sites. At a small scale, variation in distance might not

allow detection of an impact of the distance because

neighboring sites might all have a high colonization

probability if the species is mobile. On the other hand, if

the scale were too large, all sites would have a low

colonization probability, no matter their distance from

an occupied cell, because even directly neighboring cells

might be over the influence area of the occupied point

within the cell. Therefore we would not detect an impact

of distance on colonization probabilities if the scale we

are working at did not allow us to draw a distinction

between significant classes of distance (for the coloniza-

tion process). Especially in the case of avian invasive

species, individuals can be expected to have high

dispersive capacities. Therefore, the distance effect

would be small and hard to detect. It would be

interesting to try to rerun this model using a grid

including a larger number of cells (i.e., reduce the size of

cells) and a more important number of layers to

incorporate more distance classes, but once again, such

an advanced decomposition requires an important

amount of data and tremendous computing capacities.

Although detection probability estimates seem very

low, it should be noted that they correspond to the

detection probability at the stop level; therefore, global

detection probability for the cell is significantly higher.

A simple calculation shows that when the species is

present in a cell, the probability of detecting the species

at least once is 1� (1� p)K. For example, even if we have

p ¼ 0.02, the probability of detecting at least once the

species in a cell with only one route (i.e., K¼ 50, because

there are 50 stops per route) will be 1 � 0.9850 ¼ 0.64.

This probability is equal to 0.87 if there are two routes in

the cell (K ¼ 100), and increases up to 0.95 for three

routes. Furthermore, the deterioration of detectability

after a first detection is probably due to the type of data

that we used and the scale considered. We merged BBS

occupancy data from several routes when variability

among routes can sometimes be substantial.

Consequently, there can be a very large intrinsic

variance in patterns of detections within a cell. The

artificial homogenization resulting from the merging of

several routes into a cell may diminish our ability to

detect sensitive effects in the data. We suspect that the

combination of the scale considered and the grouping of

data from several routes within cells might have led to a

poor estimation of detection probability. Analyses at a

smaller scale with abundance data may provide more

reliable detectability estimates and may allow assess-

ment of the ‘‘learning effect’’ due to a previous detection,

if any. Additionally, the BBS data are subject to multiple

sources of uncertainty, especially within-site variability

(Link et al. 1994, Sauer et al. 1994), which should be

considered seriously if such data were used to fit

abundance models.

The model developed in this paper is based on a

simple, and yet powerful (in terms of versatility and

quality of estimations), hierarchical formulation aimed

at assessing the occupancy status of sites as functions of

persistence and colonization probabilities. The basic

model has been described and used in MacKenzie et al.

(2003), who gave the basic likelihood formulation, and

Royle and Kéry (2007), who provided the hierarchical

Bayesian form. Conditional on the presence of the

species or individuals in a site, data (i.e., observations)

are then expressed as a function of detection probability.

It is important to realize that this class of models can be

fitted at very different ecological scales. In fact, as
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described in Royle and Dorazio (2008), if you consider a

‘‘static’’ system, the ecological scale (e.g., population of

individuals, metapopulations) is expressed by a size

parameter (e.g., number of individuals or species).

Dynamic systems include parameters such as survival

and recruitment probabilities for populations, analo-

gous to extinction and colonization parameters in

metapopulations and community systems. Therefore,

such models can be used to address a large variety of

topics. The model shown in this paper has been

developed to be fitted at scales as different as

colonization of the United States by the Eurasian

Collared-Dove, or nest selection inside a cliff by the

Black-legged Kittiwake Rissa tridactyla.

Our model presents some components specific to

invasive species that can easily be modified. For

example, the quadratic expression of dynamics param-

eters as a function of density allows us to account for

peaks, and therefore is useful to consider a priori

biological assumptions. However, this is an arbitrary

formulation. It is possible to develop an individual-

based model to account for a more accurate relation-

ship between dynamics parameters and density (in

terms of biological and/or behavioral mechanisms).

Moreover, in the current state of the model, /1 and /2

do not depend on time. We made this decision because

we assumed that the way the neighborhood influences a

site’s fate does not depend on the growth status of the

population. This assumption can be easily relaxed.

Moreover, we modeled ci,t and hi,t as /i,t, but this can

be changed depending on whether investigators want to

have all of the dynamics parameters to be influenced by

the spatial structure of occupancy, or not. The spatial

spread of an invasive species follows successful

establishment, which is a step driven by colonization

and extinction processes (Eraud et al. 2007). Several

factors associated with variation in colonization prob-

abilities were highlighted by recent theoretical work on

invasion and metapopulation theory. Environmental

heterogeneity and distance between patches of suitable

habitats (Hastings et al. 2005), for example, have an

influence on persistence and colonization probabilities

(With 2002) and can be modeled differently for each

dynamics parameter.

Modeling of invasive species population dynamics is

often based on population density and growth rate

estimation (Veit and Lewis 1996, Taylor and Hastings

2004, Le Maitre et al. 2008), and efficient ways of

estimating occupancy are emerging via the development

of hierarchical models. However, these models are not

yet extensively used to deal with invasive species. Several

mathematical formulations have been developed to

define, estimate, and ultimately model the spatial

expansion of spreading population (e.g., Van den

Bosch et al. 1992, Neubert and Caswell 2000, Ortega-

Cejas et al. 2004). But these classical models, despite the

interesting advances they represent, suffer some limita-

tions in terms of assessment and understanding of the

expansion process (Eraud et al. 2007); e.g., lack of

estimates of relevant components such as occupancy

rate and local colonization probability. Furthermore,

existing models are usually fitted to distribution maps

derived from observational counts of organisms, assum-

ing perfect detectability of individuals or species (Eraud

et al. 2007). Models such as the one developed in this

paper, through their high modularity and consideration

of detectability issues, can expand and complete

observations given by these classical models.

Invasive species have become a major problem, not

only in North America but also throughout the world

(Cronk and Fuller 1995, Williamson 1996, 1999,

Mooney and Cleland 2001, Molnar et al. 2008).

Investigations of the spatiotemporal dynamics of

invasive species will permit predictions about future

spread as well as about the likely efficiency of

management actions designed to control such spread

(e.g., Wikle 2003). Ultimately, management and control

of invasive species must be conducted in an integrative

framework where ecological, statistical, and dynamical

approaches are to be coupled with genetic studies. As a

matter of fact, because of possible hybridization with

sympatric species, it is necessary to couple occupancy

observations with potential genetic consequences of this

invasion on other close species to fully realize the impact

of invasive species on local ecosystems.

The main aim of this work was to develop a

hierarchical model that encompasses time and space

dimensions in a convenient and flexible way. Moreover,

the distinct relationships of initial and recolonization

probabilities with density confirm that it is essential to

consider these two subprocesses to understand the

global colonization process, to fully understand how

an invasion progresses, and ultimately to be able to

make suitable management decisions.
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